

Classification of repetitive elements based on the analysis of protein domains

Pavel Neumann May 2018

A unified classification system for eukaryotic transposable elements (Wicker et al. 2007)

Classifica	tion	Structure	TSD	Code	Occurrence
Order	Superfamily				
Class I (re	trotransposons)				
LTR	Copia	GAG AP INT RT RH	4-6	RLC	P, M, F, O
	Gypsy	GAG AP RT RH INT	4-6	RLG	P, M, F, O
	Bel-Pao	GAG AP RT RH INT	4-6	RLB	М
	Retrovirus	GAG AP RT RH INT ENV	4-6	RLR	М
	ERV	GAG AP RT RH INT ENV	4-6	RLE	М
DIRS	DIRS	GAG AP RT RH YR	0	RYD	P, M, F, O
	Ngaro	GAG AP RT RH YR	0	RYN	M, F
	VIPER	GAG AP RT RH YR	0	RYV	0
PLE	Penelope	RT EN	Variable	RPP	P, M, F, O
LINE	R2	RT EN	Variable	RIR	М
	RTE	APE RT	Variable	RIT	М
	Jockey	ORFI APE RT	Variable	RIJ	м
	L1	ORFI APE RT	Variable	RIL	P, M, F, O
	1	ORFI APE RT RH	Variable	RII	P, M, F
SINE	tRNA		Variable	RST	P, M, F
	7SL		Variable	RSL	P, M, F
	55		Variable	RSS	M, O
Class II (D	NA transposons) - Su	bclass 1			
TIR	Tc1–Mariner	Tase*	TA	DTT	P, M, F, O
	hAT	Tase*	8	DTA	P, M, F, O
	Mutator	Tase*	9–11	DTM	P, M, F, O
	Merlin	Tase*	8–9	DTE	M, O
	Transib	Tase*	5	DTR	M, F
	Р	Tase Tase	8	DTP	P, M
	PiggyBac	Tase Tase	TTAA	DTB	M, O
	PIF-Harbinger	Tase* ORF2	3	DTH	P, M, F, O
	CACTA	► ↔ ← Tase − ORF2 → ↔ − <	2–3	DTC	P, M, F
Crypton	Crypton	YR	0	DYC	F
Class II (D	NA transposons) - Su	bclass 2			
Helitron	Helitron	RPA Y2 HEL	0	DHH	P, M, F
Maverick	Maverick	C-INT ATP CYP POLB	6	DMM	M, F, O

Repbase classification system (Bao et al. 2015)

Group	Superfamily/clade
DNA transposon	Academ, Crypton (CryptonA, CryptonF, CryptonI, CryptonS, CryptonV), Dada, EnSpm/CACTA, Ginger1, Ginger2, Harbinger, hAT, Helitron, IS3EU, ISL2EU, Kolobok, Mariner/Tc1, Merlin, MuDR, Novosib, P, piggyBac, Polinton, Sola (Sola1, Sola2, Sola3), Transib, Zator, Zisupton
LTR retrotransposon	BEL, Copia, DIRS, Gypsy, ERV1, ERV2, ERV3, ERV4, Lentivirus
Non-LTR retrotransposon	Ambal, CR1, CRE, Crack, Daphne, Hero, I, Ingi, Jockey, Kiri a, L1, L2, L2A, L2B, Loa, NeSL, Nimb, Outcast, Penelope, Proto1, Proto2, R1, R2, R4, Randl/Dualen, Rex1, RTE, RTETP, RTEX, Tad1, Tx1, Vingi
	SINE (SINE1/7SL, SINE2/tRNA, SINE3/5S, SINE4, SINEU)

Criteria for classification of TEs

Type of transposition:

- copy and paste (I)
- cut and paste (II)

Structure:

 type of element termini
Type of replication
Protein domain types
Phylogeny

family (e.g Peabody)

Structure:

- domain order
- type of element termini

Sequence similarity:

- 80-80-80 rule
- RepeatMasker, CENSOR

- Although there is a consensus that the classification should be hierarchical it is not widely agreed what the hierarchy should reflect (structure, phylogeny)
- All types of autonomous TEs can be determined based on the presence of conserved protein domains

Discover repeats in your next generation sequencing data

Databases of protein domains in RepeatExplorer

• Although not exhaustive, the database of protein domains from plant TEs **is the most comprehensive** data-set of its kind (it covers TEs from a wide range of Viridiplantae species; from Chlorophyta to Spermatophyta)

📌 A parallel database for **Metazoa**. It is being tested ...

All sequences in the database are classified into groups (superfamilies), following the unified classification system

RepeatExplorer: database of protein domains (Viridiplantae)

- 80446 protein domain sequences from a total of 17634 elements from 241 species
- 13863 LTR retrotransposons (5410 Ty1/copia and 8453 Ty3/gypsy)
 - GAG, PROT, RT, RH, aRH, INT, ChDII, CHDCR domains
- 852 LINE elements
 - RT, RH, ENDO domains
- 23 DIRS elements
 - RT, RH, YR (Tyrosine recombinase)
- 2 Penelope elements
 - RT
- 65 pararetroviruses
 - PROT, RT, RH domains
- 2829 Class II transposons
 - TPase or Helicase domain

RepeatExplorer: database of protein domains (Metazoa)

- 11192 protein domain sequences from a total of 5462 elements
- 2161 LTR retroelements (245 Ty1/copia, 1298 Ty3/gypsy, 564 Bel-Pao, 54 Retroviruses)
 - GAG, PROT, RT, RH, INT domains
- 1905 LINE elements
 - RT, RH, ENDO domains
- 209 DIRS elements
 - RT, RH, YR (Tyrosine recombinase)
- 90 Penelope elements
 - RT, ENDO
- 1097 Class II transposons
 - TPase or Helicase domain

RepeatExplorer: basic classification of TEs into superfamilies

- Class_I|LTR|Ty1/copia
- Class_I|LTR|Ty3/gypsy
- Class_I|DIRS
- Class_I|LINE
- Class_I|Penelope
- Class_I|pararetrovirus
- Class_I|LTR|Bel-Pao
- Class_I|LTR|Retrovirus

Viridiplantae + Metazoa Viridiplantae Metazoa

- Class_II|Subclass_1|TIR|Academ
- Class_II|Subclass_1|TIR|EnSpm/CACTA
- Class_II|Subclass_1|TIR|Ginger
- Class_II|Subclass_1|TIR|Kolobok
- Class_II|Subclass_1|TIR|Merlin
- Class_II|Subclass_1|TIR|MuDR/Mutator
- Class_II|Subclass_1|TIR|Novosib
- Class_II|Subclass_1|TIR|P
- Class_II|Subclass_1|TIR|PIF/Harbinger
- Class_II|Subclass_1|TIR|PiggyBac
- Class_II|Subclass_1|TIR|Sola1
- Class_II|Subclass_1|TIR|Sola2
- Class_II|Subclass_1|TIR|Sola3
- Class_II|Subclass_1|TIR|Transib
- Class_II|Subclass_1|TIR|Zator
- Class_II|Subclass_1|TIR|Tc1/Mariner
- Class_II|Subclass_1|TIR|hAT
- Class_II|Subclass_2|Helitron
- Class_II|Subclass_2|Maverick

Sub-classification of plant LTR retrotransposons

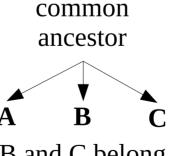
superfamily (Ty1/Copia and Ty3/Gypsy)

domain order

- INT-RT-RH
- RT-RH-INT

phylogeny

• Bel/Pao

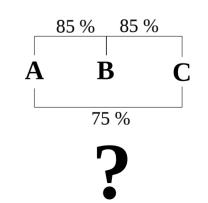

Phylogeny/ENV

• Retrovirus/ERV

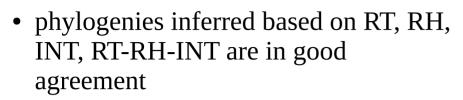
REXdb: lineage

phylogeny of polyprotein domains (RT, RH, INT)

additional support in lineage-specific fetaures



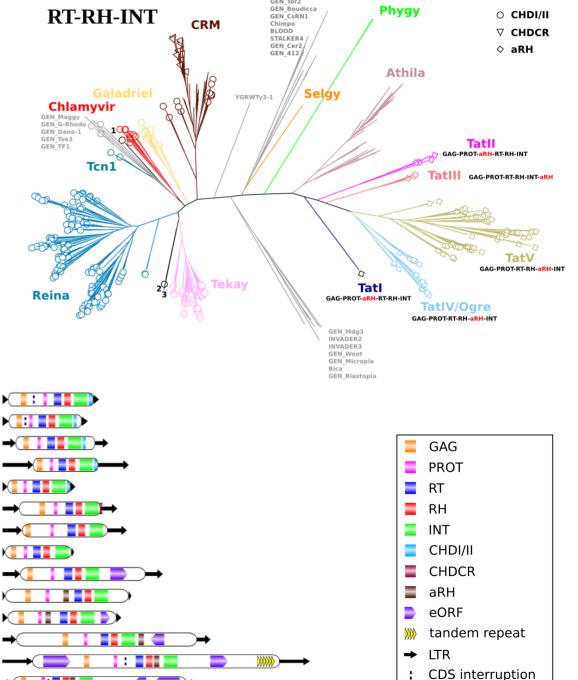
A, B and C belong to the same lineage



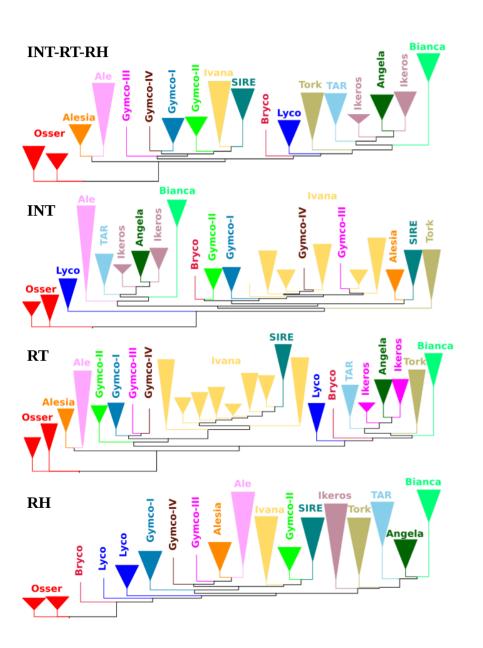
DNA sequence similarity

- 80-80-80 rule
- RepeatMasker, CENSOR
- species-specific
- naming problem (synonyms)
- classification problem:

Sub-classification of Ty3/gypsy retrotransposons


 strong support in lineage-specific features (chromodomain, aRH, eORF, PBS)

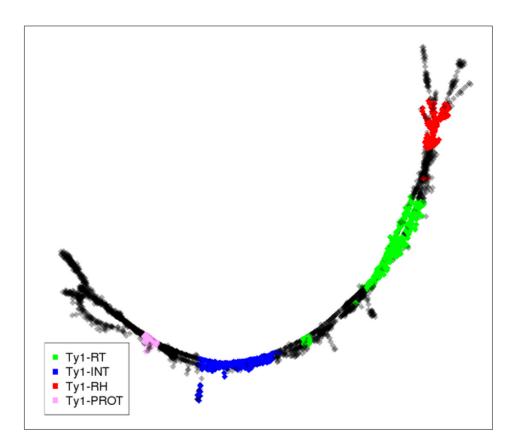
ae


			Chlorophyta Bryophyta Lycopodiophyta Acrogymnospermä Magnoliophyta	Average size (kbp)	PBS	TSD	polyprotein ORFs
		Chlamyvir	+	6.7	?, Met, lle	5	2
		Tcn1	- + +	6.4	self	5	2
		Galadriel	+ + +	6.6	Met	5/4	1
		Tekay	+ +	11.5	Met, ?, lle	5	1
		Reina	+ +	5.5	Met, ?, Thr	5	1
		CRM	+ +	6.8	Met, ?	5	1
		Phygy	- +	8.6	Trp, Thr, ?	4	ND
		Selgy	+	5.0	Ala, ?	4	2
		Athila	+ + +	12.3	Asp, Asn, Ala	5	1
		Tatl	+	9.1	Trp	5	ND
OTA	Tat	Tatll	+ -	12.8	Asp, Asn, ?	5/4	ND
0	Ogre/Tat	TatIII	+ -	14.7	Arg, His, ?	5	ND
	ŏ	TatIV/Ogre	+	15.0	Arg	5	2
		TatV	+	11.5	Lys, Arg, Asn	5	2

Chromovirus

Non-chromovirus

Sub-classification of Ty1/copia retrotransposons



	Chlorophyta Bryophyta Lycopodiophyta Acrogymnospermae Magnoliophyta	Average size (kbp)	PBS	TSD	polyprotein ORFs	
Osser	+	5.2	1/2Met	5	1	
Bryco	- +	5.3	1/2Met	5	ND	
Lyco	+	4.8	Met	5	1	
Gymco-l	+ -	5.8	Met	5	ND	
Gymco-ll	+ -	6.2	Met, 1/2Met,	? 5/4	ND	▶
Gymco-III	+ -	5.0	Leu, Met	5	ND	
Gymco-IV	+ -	5.0	Met, ?	5	ND	
Ale	+ +	5.1	Met, ?	5	1	
Ivana	+ +	5.1	Met, ?	5	1	
Ikeros	+ +	6.9	Met, ?	5	1	♦
Tork	+ +	5.4	Met, ?	5	1	♦
Alesia	+	5.1	Met, ?	5	1	
Angela	+	8.3	Met, ?	5	1	$\rightarrow $
Bianca	+	6.1	1/2lle	5	2	
SIRE	+	9.9	Met?	5	2	→(::::::::::::::::::::::::::::::::::::
TAR	+	6.3	self	5	1	→
	GAG PROT	IN R	NT 📕 RH T 🍃 eOR	→ F :	LTR CDS	interruption

RepeatExplorer: Automatic analysis of TE protein domains (blastx using NGS reads)

Cluster characteristics:

size	3344
size_real	3344
ecount	40179
supercluster	11
annotations_summary	16.54% Class_I/LTR/Ty1_copia/SIRE:Ty1-RT 12.56% Class_I/LTR/Ty1_copia/SIRE:Ty1-INT 5.38% Class_I/LTR/Ty1_copia/SIRE:Ty1-RH 3.08% Class_I/LTR/Ty1_copia/SIRE:Ty1-PROT 0.12% Class_I/LTR/Ty1_copia/Ivana:Ty1-RH
pair_completeness	0.872340425531915
pbs_score	None
TR_score	None
TR_monomer_length	None
loop_index	0.00239234449760766
satellite_probability	6.1246173690846e-24
consensus	None
TAREAN_annotation	Other
orientation_score	1

supercluster_report.html

SC \$	size	best_hit	Similarity_based_annotation	Tarean_annotation \u00e0	clusters \$
	nhits proportion domains_string				
11 <u>11</u>	5809	SIRE	All 1408 0.24 °repeat 1408 0.24 °mobile_element 1408 0.24 °Class_I 1408 0.24 °TTR 1408 0.24 °Tyl_copia 1408 0.24 °Tyl_copia 1408 0.24 °Tyl_copia 1408 0.24 °SIRE 1403 0.24 147 (Tyl-GAG), 420 (Tyl-INT), 103 (Tyl-PROT), 180 (Tyl-RH), 553 (Tyl-RT),		<u>107, 183,</u> <u>372, 53</u>

RepeatExplorer: DANTE

- Protein domains search
 - optional
 - based on **last** program (fasty in the previous version)
 - classification is based on **multiple** top hits (80% of the best score)
 - sequences are classified on the deepest level showing no conflict among hits (Class_I|LTR|Ty3/gypsy|non-chromovirus|OTA|Ogre/Tat| TatV)
 - output is data-rich **gff3** file which can be used in genome browsers
- Protein domains filter
 - multiple criteria for filtering
 - generates filtered gff3 file and protein domain sequences in fasta file
 - protein sequences of reference elements are not included in the fasta file (they are present in the gff3 file)

Note: DANTE tool can be used not only for the analysis of contigs generated by RepeatExplorer but also for any other kind of DNA sequences including whole genome assemblies.

Keep in mind

- Always select the appropriate database of protein domains (either for Viridiplantae or Metazoa spp.).
- seed-free vascular plants (lycopods, mosses, ferns, horsetails) and more primitive plants are not yet sufficiently represented in the database and they are likely to have unique lineages of some types of TEs
- it is better to classify TEs on the level which is reliable than to classify them incorrectly; pay attention to conflicts (e.g. in nested insertions, chimerical clusters)
- non-autonomous TEs, possessing truncated CDS, and old/mutated TEs are difficult or impossible to classify using protein domain sequences
- analyze all found protein domains to get the highest confidence of the classification
- if you are not sure how to classify a given TE take a look at other features (pbs, introns, extra ORF)
- you should be the one who makes the final decision; do not blindly rely on the automatic outputs