RepeatExplorer 2.0

Discover repeats in your next generation sequencing data

8th Workshop on the Application of Next Generation Sequencing to Repetitive DNA Analysis in Plants

May 21-23, 2019

Institute of Plant Molecular Biology, České Budějovice, Czech Republic

RepeatExplorer Server

Implementation of principles described in:

- Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula (BMC Genomics 2007, 8:427)
- Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data (BMC Bioinformatics 2010, 11:378)
- TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res., doi:10.1093/nar/gkx257(2017)

Available Tools:

- NGS data preprocessing
- Graph-based clustering
 - Characterization of repeats:
 - Identification, Annotation, Quantification
- Satellite identification
- Chip-Seq analysis
- Domain based ANnotation of Transposable Element DANTE
- Profrep

Contributors: Jiri Macas Pavel Neumann

- Jaroslav Steinhaisel
- Jiri Pech
- Karsten Klein
- Georg Hermanutz
- Nina Hostakova
- Tihana Vodrak
- Petr Novak

What is Graph?

The are two approaches how to use a graph to describe and analyze sequences reads:

- Overlap-Layout-Consensus
- De-Bruijn Graph

The are two approaches how to use a graph to describe and analyze sequences reads:

Overlap-Layout-Consensus

The are two approaches how to use a graph to describe and analyze sequences reads:

- Overlap-Layout-Consensus
- De-Bruijn Graph

Sequence read:

AAAGCTCAGTTTCGAGCCAGAGACCAGAAAGTGTGGGAGCTTACAGCGCAACTTCAGCAAGAGCGGAG

Why to use graph representations :

- Robust partitioning/classification of reads based on mutual similarities
- Informative graphical representation (layouts)
- Path in graph can be converted to contigs

Why to use graph representations :

- Robust partitioning/classification of reads based on mutual similarities
- Informative graphical representation (layouts)
- Path in graph can be converted to contigs

Why to use graph representations :

- Robust partitioning/classification of reads based on mutual similarities
- Informative graphical representation (layouts)
- Path in graph can be converted to contigs

Why to use graph representations :

- Robust partitioning/classification of reads based on mutual similarities
- Informative graphical representation (layouts)
- Path in graph can be converted to contigs

RepeatExplorer workflow

RepeatExplorer workflow

RepeatExplorer operates under GIGO principle:

Garbage In

- Quality control
- Trimming, filtering, adapter removing
- Convert fastq to fasta
- Interlacing, sampling
- Modification of sequence names

Quality control

- Trimming, filtering, adapter removing
- Convert fastq to fasta
- Interlacing, sampling
- Modification of sequence names

FastQC program

- Galaxy
- GUI based
- Command line

Bioinformatics Group at the Babraham Institute.

Quality control

- Trimming, filtering, adapter removing
- Convert fastq to fasta
- Interlacing, sampling
- Modification of sequence names

Dotter - graphical dotplot program for detailed comparison of two sequences

Simple addapter detection

Quality control

- Trimming, filtering, adapter removing
- Convert fastq to fasta
- Interlacing, sampling
- Modification of sequence names

Visual inspection!

- Quality control
- Trimming, filtering, adapter removing
- Convert fastq to fasta
- Interlacing, sampling
- Modification of sequence names

Tool:

Preprocessing of fastq paired-reads

- 1. Trimming (optional)
- 2. Filter by quality
- 3. Discard single reads, keep complete pairs
- 4. Cutadapt filtering
- 5. Discard single reads, keep complete pairs
- 6. Sampling (optional)
- 7. Interlacing two fasta files

- Quality control
- Trimming, filtering, adapter removing
- Convert fastq to fasta
- Interlacing, sampling
- Modification of sequence names

Tool: affixer

```
comparative analysis:
>AB1
acgacagctgactaatgc
>AB2
cttcgaggctacacgagct
>AB3
Actatcgacactgccggcgcg
...
>XY1
gccccgtcgccgtccgtgtcg
>XY2
tgtgtgcccgtctgcgcgccccc
>XY3
atatgctatgcgcgc
```


Prerun: all-to-all sequence comparison on small sample of NGS reads

 $k_g = \frac{2E}{N(N-1)}$

 k_{g} genome specific coefficient - **graph density** depends on repetitive content and genome size

Density corresponds to probability that two randomly taken sequences from genome will be similar

 \boldsymbol{k}_{a} is used to estimate maximum number of processable reads

Prerun: all-to-all sequence comparison on small sample of NGS reads

Number of reads which can be processed with 16GB RAM in various plant species

Pre-clustering analysis

All-to-all sequence comparison on small sample of NGS reads

$$k_g = \frac{2E}{N(N-1)}$$

N .. 20,000 sample reads*E* .. number of identified similarity hits

 k_{g} genome specific coefficient - graph density depends on repetitive content and genome size

Density corresponds to probability that two randomly taken sequences from genome will be similar

 k_g is used to estimate maximum number of reads providing that we can process ~ 340 \cdot 10⁶ of similarity hits on machine with 16GB of RAM

Prerun – optional filtering of abundant satellite sequences

Example of dense satellite cluster:

Number of reads (Vertices) 44,772 Number of similarity hits (Edges) 542,348,907

Total number of similarity hits

2.000.000 1,394,970,205 Density

0.54

Approx 1/3 of stored similarity hits originate from satellite which represent approx 2% of genome

Prerun – optional filtering of abundant satellite sequences

Example of dense satellite cluster:

Such clusters can be filtered out from the clustering

Filtering critera:

- cluster must be classified by TAREAN as satellite
- cluster consist of at least 1000 reads
- reads in cluster generate at least 3% of total similarity hits

However, 10% of the reads of affected clusters is kept in the analysis – to keep track of such clusters

All pairs of reads with similarity above threshold are found using mgblast:

Default threshold: Minimal overlap : 55 nt and 55% of length of shorter sequence Minimal similarity : 90%

Stringency affects maximum number of reads!

Length of overlap must be adjusted for reads shorter then 100 nt

Alternative threshold – Illumina short:

Minimal overlap 20 nt and 40% of length, minimal similarity :90%

All pairs of reads with similarity above threshold are found using megablast:

Default threshold: Minimal overlap : 55 bp and 55% of length of shorter sequence Minimal similarity : 90%

Stringency affects maximum number of reads!

Length of overlap must be adjusted for reads shorter then 100 nt

Presence of unfiltered **adapter** sequence Does not pass similarity threshold, but

All pairs of reads with similarity above threshold are found using megablast:

Default threshold: Minimal overlap : 55 bp and 55% of length of shorter sequence Minimal similarity : 90%

Stringency affects maximum number of reads!

Length of overlap must be adjusted for reads shorter then 100 nt

Low complexity repeat – **DustMasker**

Simple repeats are underestimated or not detected at all: e.g.

- Telomeric motifs - microsatellites

...

By default, DustMasker is on but it can be disabled to increase sensitivity of simple repeats detection.

Beware: Disabling dust can significantly increase computation time and memory usage!

Clustering

Clustering

- Graph is divided into subgraphs (clusters/communities)
- Quality of division is measured using <u>modularity</u>
- Modularity is the fraction of the edges that fall within the given groups minus the expected fraction if edges were distributed at random
- Clusters have dense connections between the nodes within the clusters but sparse connections between nodes in different clusters

Cluster centered analysis

Cluster centered analysis

Supercluster Identification

Supercluster Identification

Reads which originate from single repeat are frequently split into multiple cluster during clustering phase – we need to identify such clusters

Supercluster Identification

Identification of related clusters from presence of paired reads

W number of reads pairs shared between clusters x and y n_x and n_y is number of reads in cluster *x* and cluster *y* with absent read mate within the same cluster respectively

Suitable $k_{x,y}$ cutoff 0.05 – 0.2 full connection: $k_{x,y} = 1$ no connection $k_{x,y} = 0$

Supercluster Identification

Supercluster Identification

In the absence of paired-end reads clusters are equivalent to superclusters

Cluster centered analysis

Read length << monomer

TAREAN calculates **graph layout** and provide automatic analysis of **graph topology** with the aim to identify **tandem repeats**

Original reads

Oriented reads

A directed graph is called **strongly connected** if every vertex is reachable from every other vertex

C = size of the largest strongly connected components Total graph size

C – Connected component index

Paired-End Sequencing

Pair completeness = fraction of complete pairs in cluster

TAREAN sorts clusters into five groups

- Putative satellite (high confidence) high P and C score
- Putative satellite (low confidence)

P and **C** score lower

Putative LTR element

Primer binding site detected, presence of long ORF

• rDNA

tandem organization + similarity to known rDNA sequences

Other clusters

Cluster centered analysis

Assembly

Reads are assembled by CAP3 program, each cluster separately:

ACTGTGTCGTCGTCGTCGTGTG CGTCGTCG-CGTGTGGT GTCGTGTG-TTGTCGTCTGA ACTGTGTCGTCGTCGTCGTGTGGTTGTCGTCTGA Contig

Putative satellite clusters are not assembled by CAP3, instead TAREAN generate k-mer based consensus:

Cluster centered analysis

All reads are compared with:

- Database of protein domains (REXdb)
- DNA database
- Custom database (optional)

All reads are compared with:

- Database of protein domains (REXdb)
- DNA database
- Custom database (optional)

Protein domains are derived from coding sequences of transposable elements

All reads are compared with:

- Database of protein domains
- DNA database (Viridiplatae specific!)
- Custom database (optional)
 - rDNA
 - tRNA
 - Plastid DNA
 - Mitochondria DNA
 - Sequences of potential contaminants

All reads are compared with:

- Database of protein domains
- DNA database
- Custom database (optional)

Library of repeats as DNA sequences in fasta format. The required format for IDs in a custom library is :

>reapeatname#class/subclass

number of reads [reads]

109610 read total

number of reads [%]

number of reads [reads]

Reporting - Repeat annotation summary

	Genome_	proportion[%]	Nsuperclusters	Nclusters	Nread
Unclassified_repeat	I	· · · · · · · · · · · · · · · · · · ·	 0	0	 I
rDNA	i	0	0	0	
45S_rDNA	i	14.71	1	9	1612
18S_rDNA	i	0 İ	0	0	
25S_rDNA	i	0	0	0	i (
°5.85_rDNA	i	0	0	0	i (
°5S_rDNA	i	2.3	1	j 1	2524
satellite	i	20.11 j	4	8	2204
mobile_element	i	0 j	0	i 0	j (
Class_I	i	0 j	0	i 0	j (
SINE	i	0 j	0	j 0	j (
LTR	i	0 j	0	0	j (
¦Ty1_copia	i	0 j	0	0	j (
Ale	i	0 j	0	0	j (
Alesia	i	Θj	0	j 0	j (
					İ (
	Genome_proportion[%	6] Nsupercluste	ers Nclusters	Nreads	İ (
organollo		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		İ (
organelle plastid	0 8.57	0 1	0 10	0 9396	İ (
°mitochondria	0	0		0	(
	· ·	·		·	(
					1140
					(
					(
					(
	<pre>Genome_proportion[%] </pre>	Nsuperclusters	Nclusters Nr	eads	485
Unclassifed	6.92	4	4	7582	
					(
					(
	Genome_proportion[%]	Nsuperclusters	Nclusters Nr	eads	(
contamination	6.42	1	5	7040	
			· ·		
	TatII	0	0	0	
	TatIII	0	0	0	
	TatIV_Ogre	0	0	0	(

Top-down classification

Top-down classification

Best child selection criteria

best hit proportion: $rac{H_{c,1}}{H_p} > 0.7$ best hit to second best hit: $rac{H_{c,1}}{H_{c,1}+H_{c,2}} > 0.9$ overall hits proportion: $rac{H_{c,1}^2}{N} > 2.5$

 ${\cal N}$ number of reads in supercluster

 H_p number of hits in parent node

 $H_{c,x}$ number of hits in children node x, nodes are sorted by number of hits, largest is the first

 $H_{c,1}$ number of hits in child node with the highest number of hits (best child)

 $H_{c,2}$ number of hits in child node with the second highest number of hits

Full Repeat Analysis vs. Tandem Repeat Analysis

Clustering can be run in two different modes:

• Full Repeat Analysis

Focus on all types of repeat but less sensitive satellite detection

Tandem Repeat Analysis

Focus on tandem repeat detection only Better sensitivity of satellite identification

Full Repeat Analysis

Tandem Repeat Analysis

- Satellite with longer monomer tend to split onto multiple clusters
- Merging before running TAREAN analysis will improve detection of such satellites

RepeatExplorer2 availability:

source code <u>https://bitbucket.org/petrnovak/repex_tarean</u>

• Galaxy server – Graphical user interface http://repeatexplorer-elixir.cerit-sc.cz/

www.repeatexplorer.org - Manuals

- Your custom Galaxy instance
- Command line

Collaboration

Abbott

Costello

RepeatExplorer 2.0

CAFFEINE

Discover repeats in your next generation sequencing data

POWERED BY

POWERED BY

ICE CREAM