# RepeatExplorer

Discover repeats in your next generation sequencing data

## What is RepeatExplorer ?

#### Implementation of principles described in:

- Repetitive DNA in the pea (*Pisum sativum* L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and *Medicago truncatula* (BMC Genomics 2007, 8:427)
- Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data (BMC Bioinformatics 2010, 11:378)
- TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res., doi:10.1093/nar/gkx257(2017)

#### Protocols

Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nature Protocols 15:3745–3776.

#### Available Tools:

- NGS data preprocessing
- RepeatExplorer2 pipeline
- TAREAN pipeline
- Chip-Seq analysis
- Domain based ANnotation of Transposable Element – DANTE
- Profrep
- Visualization

## Principle of RepeatExplorer



## Principle of RepeatExplorer



CLUSTER = a set of frequently overlapping reads = REPEAT FAMILY

## Graph Based Representation of Sequence Reads



## **Graph Based Representation of Sequence Reads**



## Principle of RepeatExplorer



## Principle of RepeatExplorer



## **Graph Based Clustering**



A **community**, with respect to graphs, can be defined as a subset of nodes that are densely connected to each other and loosely connected to the nodes in the other communities in the same graph

#### community ~ cluster ~ repeat family

## Graph Based Representation of Sequence Reads

- Informative graphical representation
- Graph layout
- Vertex coloring







Input data

- Short reads hundreds of nt
- Paired-end, interleaved
- Single-end
- Pre-processed
- Uniform length
- FASTA format



## Preprocessing







#### All-to-all sequence comparison on small sample of input data



**graph density -**  $k_g$  is genome specific coefficient and depends on the repetitive content and genome size

Density corresponds to probability that two randomly taken sequences from genome will be similar

 $k_g$  is used to estimate maximum number of processable reads

$$k_{g} = \frac{2E}{N(N-1)}$$

### All-to-all sequence comparison on small sample of input data

All-to-all sequence comparison on small sample of NGS reads

$$k_g = \frac{2E}{N(N-1)}$$

- **N** .. 20,000 sample reads
- *E* .. number of identified similarity hits

 $k_g$  is used to estimate maximum number of reads  $N_{max}$  providing that we can process with available RAM (**M**)

$$N_{max} = \sqrt{m \frac{M}{k_g}}$$

### All-to-all sequence comparison on small sample of input data

All-to-all sequence comparison on small sample of NGS reads

$$k_g = \frac{2E}{N(N-1)}$$

- *N* .. 20,000 sample reads
- *E* .. number of identified similarity hits

 $k_g$  is used to estimate maximum number of reads  $N_{max}$  providing that we can process with available RAM (**M**)

 $N_{max} = \sqrt{m \frac{M}{k_a}}$ 

| Species               | Number of<br>reads | Genome<br>Size (1C) | Coverage<br>[%] |
|-----------------------|--------------------|---------------------|-----------------|
| Musa acuminata        | 3,046,164          | 623 Mbp             | 48.9            |
| Lasiurus borealis     | 4,256,140          | 2,526 Mbp           | 16.8            |
| Pisum sativum         | 3,011,839          | 4,300 Mbp           | 7.0             |
| Vicia panonica        | 1,039,442          | 5,730 Mbp           | 1.8             |
| Silene latifolia      | 2,943,062          | 5,850 Mbp           | 5.0             |
| Secale cereale        | 1,899,753          | 7,917 Mbp           | 2.4             |
| Lathyrus latifolius   | 1,464,940          | 9,980 Mbp           | 1.5             |
| Fritilaria imperialis | 12,220,382         | 42,400 Mbp          | 2.9             |
| Fritilaria affinis    | 1,168,248          | 45,000 Mbp          | 0.3             |

Number of reads which can be processed with 16GB RAM

All-to-all sequence comparison on small sample of input data





graph density = 1

All-to-all sequence comparison on small sample of input data



All-to-all sequence comparison on small sample of input data



Number of reads (Vertices)44,772Number of similarity hits (Edges)542,348,907

Input data (All reads)2,000,000Total number of similarity hits1,394,970,205

# Approx 1/3 of stored similarity hits originate from satellite which represent only 2% of genome



- Clusters composed from satellite reads can be scaled down without loosing information.
- Sample of 10% of reads of is kept in analysis to keep track of this satellite



## All-to-all comparison

- Similarity search using mgblast
- Default threshold:
  - overlap : 55 nt and 55% of the length
  - minimal similarity 90%
- By default mgblast is using **DustMasker** (low complexity repeat filter)
  - simple repeats are underestimated or not detected (e.g. telomeric motifs, microsatellites)
  - Masking of low complexity can be disabled → long running time and increased memory usage



## All-to-all comparison

- Similarity search using mgblast
- Default threshold:
  - overlap : 55 nt and 55% of the length
  - minimal similarity 90%
- By default mgblast is using **DustMasker** (low complexity repeat filter)
  - simple repeats are underestimated or not detected (e.g. telomeric motifs, microsatellites)
  - Masking of low complexity can be disabled → long running time and increased memory usage
- Adapters in sequence can slow down allto-all search





- Graph is divided into subgraphs (clusters/communities)
- Clusters have dense connections between the nodes within the clusters but sparse connections between nodes in different clusters













Sometimes (often) reads which belong to single repeat family are split into multiple clusters



#### Identification of supercluster using paired-end reads



W number of reads pairs shared between clusters x and y $n_x$  and  $n_y$  is number of reads in cluster x and cluster y with absent read mate within the same cluster respectively

> Suitable  $k_{x,y}$  cutoff 0.05 – 0.2 full connection:  $k_{x,y}=1$ no connection  $k_{x,y}=0$

#### Identification of supercluster using paired-end reads





## **Tandem Repeat Analyzer - TAREAN**



TAREAN calculates **graph layout** and provide automatic analysis of **graph topology** with the aim to identify **tandem repeats** 

# Tandem Repeat Analyzer - TAREAN

#### Principle

- All reads within cluster are set to have same 3'to5' orientation with hypothetical tandem repeat monomer
- Directed graph is constucted
- Larges circular structures are detected (a.k.a strongly connected component)
- Connected Component index



## Tandem Repeat Analyzer - TAREAN



### Tandem Repeat Analyzer - TAREAN

#### Principle



Five groups of clusters by TAREAN

Putative satellite (high confidence)

high **P** and **C** score

- Putative satellite (low confidence)
  P and C score lower
- Putative LTR element

Primer binding site detected, presence of long ORF

• rDNA

tandem organization + similarity to known rDNA sequences

Other clusters

no tandem repeat like structure

#### Principle

#### **Reconstruction of tandem repeat monomer**

- k-mer based approach
- multiple variants reported
- sorted based on significance

#### **TAREAN** limitation

- paired end reads required
- · limited sensitivity to TR with very short monomer





#### **Contig assembly**

**<u>Reads</u>** are assembled by CAP3 program, each cluster separately:

#### ACTGTGTCGTCGTCGTCGTGTG CGTCGTCG-CGTGTGGT GTCGTGTG-TTGTCGTCTGA ACTGTGTCGTCGTCGTCGTGTGGTTGTCGTCTGA Contig

High confidence putative satellite clusters are not assembled by CAP3, instead TAREAN generate **k-mer based** consensus:



All **reads** are compared with:

- Database of protein domains (REXdb)
- DNA database
  - rDNA, tRNA
  - Organele DNA
  - potential contaminants
- Custom database (optional)

| Database sequence classification | Protein domain | Number of<br>reads with<br>similarity hit | Proportion<br>No of reads / cluster size |
|----------------------------------|----------------|-------------------------------------------|------------------------------------------|
| mitochondria                     |                | 25                                        | 0.0023                                   |
| Ogre Ty3-RH                      | Ty3-RH         | 2977                                      | 0.27402                                  |
| Retand Ty3-RH                    | Ty3-RH         | 2                                         | 0.00018                                  |
| Ogre Ty3-RT                      | Ty3-RT         | 3473                                      | 0.31968                                  |
| Ogre Ty3-aRH                     | Ty3-aRH        | 1713                                      | 0.15768                                  |



#### Report



109610 read total

Report





### Reporting

















#### Automatic annotation

|                                             | Proportion[%] | Nsuperclusters | Nclusters | Nreads |
|---------------------------------------------|---------------|----------------|-----------|--------|
|                                             |               |                |           |        |
| Unclassified_repeat (conflicting evidences) | 4.06          | 2              | 5         | 67995  |
| rDNA                                        | 0             | 0              | 0         | 0      |
| 45S_rDNA                                    | 0.29          | 2              | 4         | 4823   |
| 185_rDNA                                    | 0.04          | 1              | 1         | 653    |
| 25S_rDNA                                    | 0.02          | 1              | 1         | 321    |
| '5.8S_rDNA                                  | 0             | Θ              | 0         | 0      |
| '5S rDNA                                    | 0.12          | 1              | 1         | 1955   |
| satellite                                   | 8.78          | 33             | 33        | 147033 |
| 'mobile element                             | 0             | 0              | 0         | 0      |
| Class I                                     | 0             | 0              | 0         | 0      |
| SINE                                        | 0             | 0              | 0         | 0      |
| LTR                                         | 0.77          | 2              | 5         | 12931  |
| Tyl copia                                   | 0             | 0              | 0         | 0      |
| I I I I-Ale                                 | i 0           | Θ              | 0         | i 0    |
| i i iAlesia                                 | i 0           | Θ              | 0         | i 0    |
| Angela                                      | 0             | 0              | 0         | 0      |
| Bianca                                      | 0.14          | 1              | 1         | 2285   |
| Bryco                                       | 0             | 0              | 0         | 0      |
| Lyco                                        | 0             | 0              | 0         | 0      |
| Gymco-III                                   | 0             | Θ              | 0         | 0      |
| Gymco-I                                     | 0             | Θ              | 0         | 0      |
| Gymco-II                                    | 0             | 0              | 0         | 0      |
| Ikeros                                      | 0             | 0              | 0         | 0      |
| I I I Ivana                                 | 0.18          | 2              | 2         | 3020   |
| Gymco-IV                                    | 0             | 0              | 0         | 0      |
| l l lOsser                                  | 0             | 0              | 0         | 0      |
| I I I-SIRE                                  | 9.57          | 5              | 22        | 160206 |
| I I ITAR                                    | 0.26          | 5              | 5         | 4355   |
| I I ITork                                   | 0.36          | 1              | 1         | 5947   |
| 'Tyl-outgroup                               | 0.50          |                | 0         | 0      |
| 'Ty3_gypsy                                  | 0             | 0              | 0         | 0      |
| - non-chromovirus                           | 0             | 0              | 0         | 0      |
| non-chromo-outgroup                         | 0             |                |           |        |
|                                             |               |                |           |        |

#### Automatic annotation



#### RepeaExplorer





#### RepeaExplorer





#### **RepeatExplorer Related Tools**

- DANTE Domain based ANnotation of Transposable Elements
  - assembly annotation using REXdb
  - same TE classification system as RepeatExplorer based on REXdb
- Profrep
  - assembly annotaion based on RE results
- ChIP-Seq Mapper
  - Inentification of repeats associated with CENH3 or with a epiginetic marks

# **Availability**

RepeatExplorer Galaxy Server

https://repeatexplorer-elixir.cerit-sc.cz/

regalaxy@rt.cesnet.cz

Support:

Martina Macháč Zdeněk Salvet Miroslav Ruda Ivana Křenková







# Availability

# **Command line tools**

https://bitbucket.org/repeatexplorer/ https://bitbucket.org/petrnovak/repex\_tarean https://github.com/kavonrtep/dante https://github.com/kavonrtep/SeqGrapheR/

#### **Contributors:**

Jiri Macas Pavel Neumann Jaroslav Steinhaisel Jiri Pech Karsten Klein

Georg Hermanutz Nina Hostakova Tihana Vodrak Petr Novak

ChIP-Seq Mapper, RepeatExplorer utilities RepeatExplore with TAREAN DANTE SeqGrapheR

# Thank you!

# Questions?