
Design of sequencing and repeat analysis experiments

Platform and coverage

- Illumina is preferred, use paired-end reads
- avoid coverage > 1x (\rightarrow similarity hits from single/low copy sequences) , **0.1-0.5x is optimal**

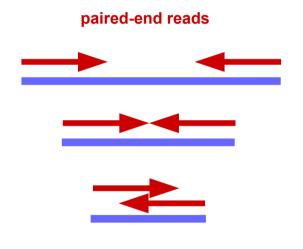
Design of sequencing and repeat analysis experiments

Platform and coverage

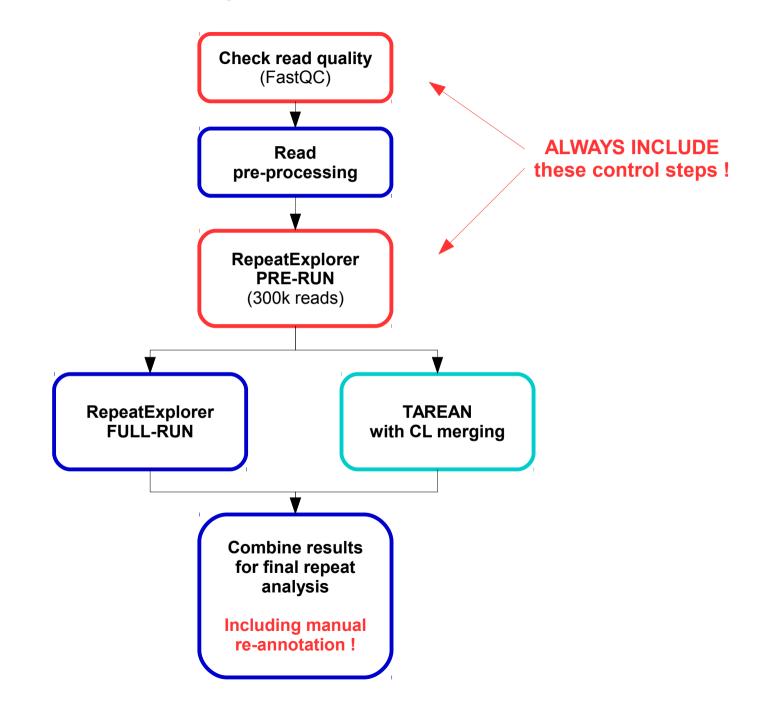
- Illumina is preferred, use paired-end reads
- avoid coverage > 1x (\rightarrow similarity hits from single/low copy sequences), 0.1-0.5x is optimal

Read length vs. fragment length

- sequenced fragments should be > 2 x read length

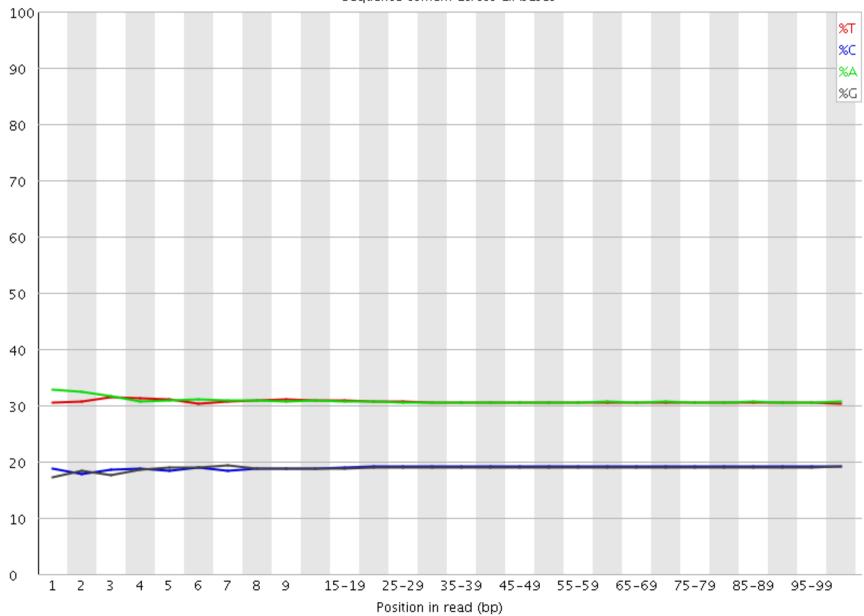

Consider eventual bias in template preparation

- PCR-based x PCR-free kits
- avoid transposon-based kits


Spend some more money to make <u>experimental replicates for quantification</u>

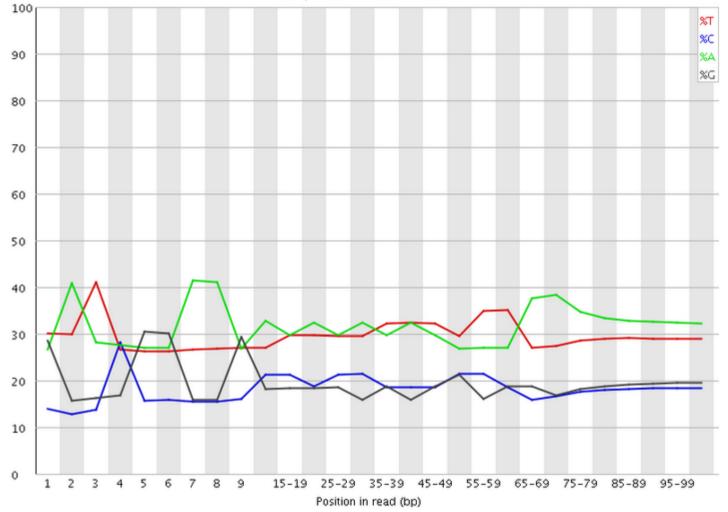
- repeating library preparations (not re-sequencing from the same library)

CHECK YOUR INPUT DATA! (and do not trust public sequence archives)



Analysis workflow

Per base sequence content



Sequence content across all bases

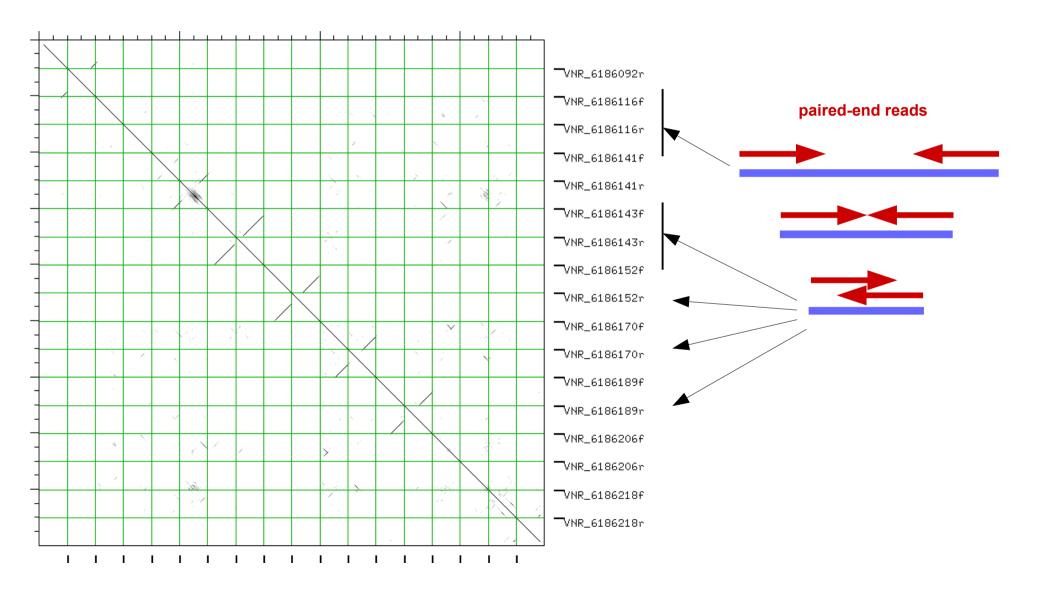
😳 Per base sequence content

Sequence content across all bases

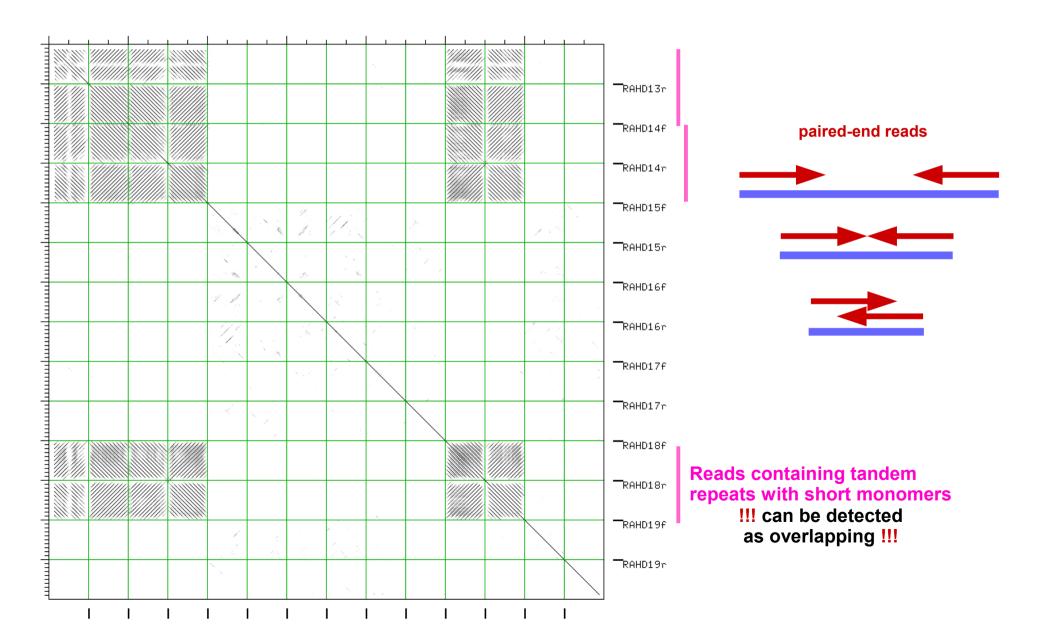


Overrepresented sequences

Sequence	Count	Percentage	Possible Source							
GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTGATATATCTCGTAT	1743087	10.335846049950064	TruSeq Adapter, Index 5 (97% over 37bp)							
GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTGATATATAT	36128	0.21422536344576945	TruSeq Adapter, Index 5 (97% over 37bp)							
CGGAAGAGCACACGTCTGAACTCCAGTCACACTGATATATCTCGTATGCC	35955	0.21319953893635515	TruSeq Adapter, Index 5 (97% over 34bp)							
GATCGGAAGAGCACACGTCTGAACTCCAGTCACACTGCTATATCTCGTAT	22960	0.13614410830145224	TruSeq Adapter, Index 5 (97% over 37bp)							


FASTX-Toolkit: Compute quality statistics -> Draw nucleotides distribution chart (alternative to FastQC)

read position

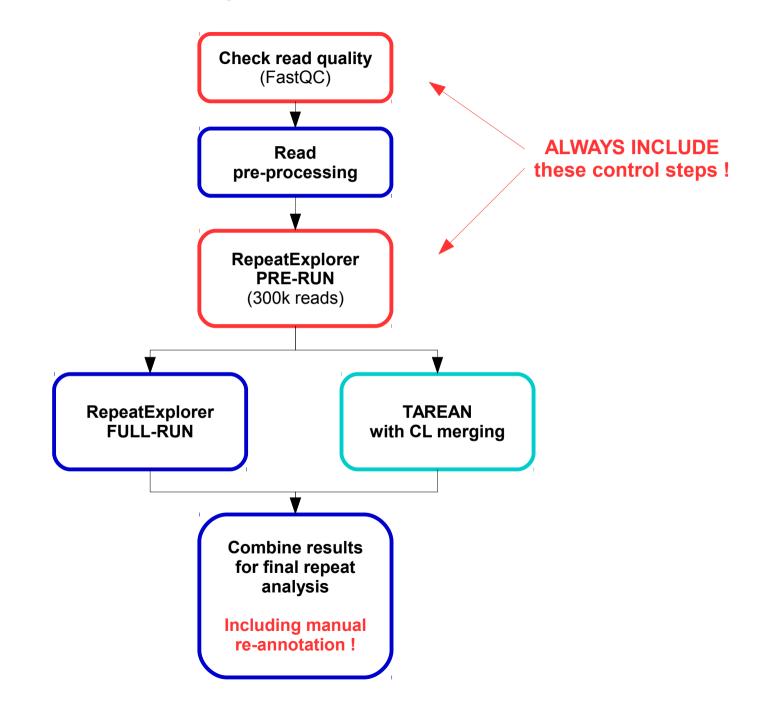

Read length vs. fragment length

- sequenced fragments should be > 2 x read length

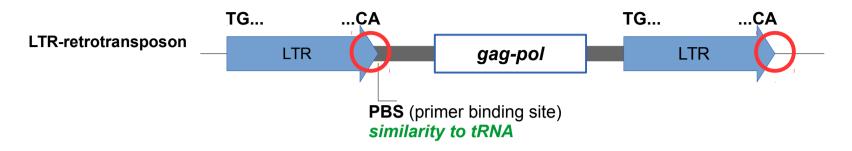
Read length vs. fragment length

- sequenced fragments should be > 2 x read length

Adela (Adelhaide kratzmarii)


- Fictional plant from a popular Czech movie
- We reconstructed its genome ;-)
- It turned out to be very small but made only by repeats !
- EXCELLENT for training at this workshop

- Do not expect such nice results with your real data
- On the other hand, your real model will not eat you



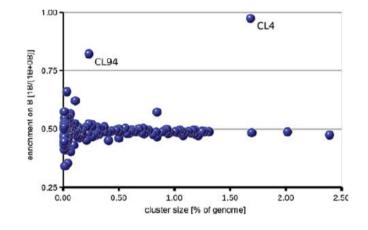
Analysis workflow

Insertion sites of mobile elements


A new tool for detection of LTR / PBS sites

Program output:

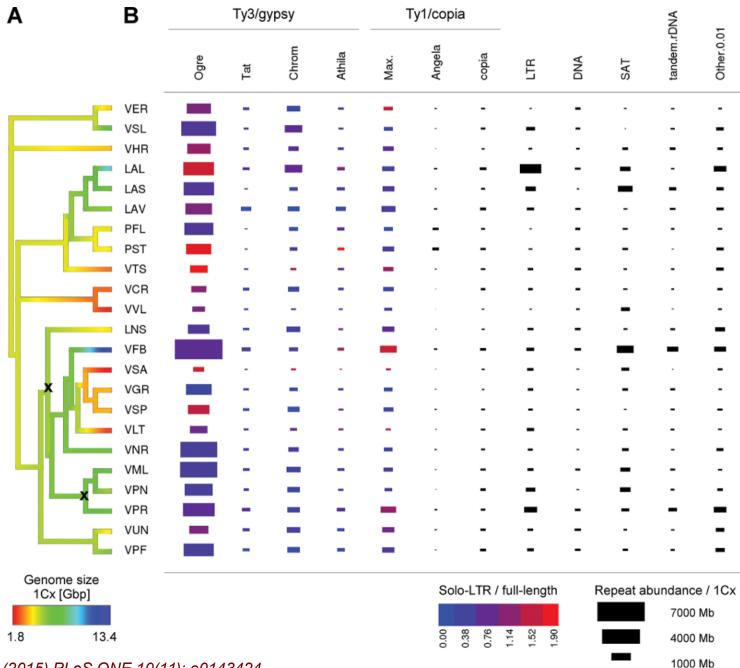
_															_				_	_		
CL	contig	pos.	site	site_	depth	out_m	a• ma	ske∳i	maske≬	regi	ion_in	region	_out	blast to tRNA	%	length		site	_	tRNA		E-val
																		fron		from		
19	400		TGCGA CA		106.6	30	.4 0.0	0362	0.2975	GCC	GAGGAA	GATGO	GCGA	At-chr2.tRNA28-Arg	100	18	0	0 :	3 2	0 23	6	7E-007
	1 1	(window size	7)		1						1		1		1 1						1 1
											L											
												tRI	NA-A	rq								
														<u> </u>								
TAAT	r*TTTT	rccg	CGACCATCG	GGA	*GGAA	TCGTA	TTTT	T*CG	AGATG	CGA	CAGATG	GCGACI	CTGC	TGGGGAC * * TA *GC'	rcca/	AGCAAA	AGA	GAGTGA	AGCO	TAAT	TTAG	
TAAT	r*TTTT	rccg	CGTCCATCG	GGA	* GG <mark>G</mark> A	TCGTA	TTTT	T*CG	AGATG	CGA	са атаа	CCATTA	GATG	TGAAGACACAACTT	GATT	AGAGGO	GACT					
TAA	* 'T''T'''T''	rccg	CAACCATCA	TGA	*GGAA	TCATA	тттт	T*CG	AGATG	CGA	CATATG	GTGACT	CTAC	TGGGGAC * * TA * GC	rc <mark>t</mark> aj	AGCAAZ	AGG	GAG				
CCA		rece			_											CAAGCA		23				
TA A																_	_	_				
TAA.	_		CGACCATCG		-											AG <mark>A</mark> AAA						
			CGACCATCG									TGAGTI		TGGCAAGGCTTGGG								
'AAA'		_	CGACCATCG					_		_		CGCGTA	ACAA	TCGTATCAAATCTT	ACAC:	FTGAAC	CAAA	CT				
TAAT	r* <mark>TTTT</mark> T	r <mark>t</mark> cg	CGACCATCG	GGA	* <mark>GGAA</mark>	TCGTA	TTTT	T* <mark>T</mark> G	AGATG	GGA	TACTAG	GCCCAT	GTAA	TCACTTCTTCTGGC	CCAT	AATTGA	AGTA	CAA				
TAAT	r* <mark>TTTT</mark> T	rccg	cgacca <mark>a</mark> cg	GGA	* <mark>GGAA</mark>	TCGTA	TTTT	T*CG	GAGATG	GGA	C <mark>AG</mark> TTA	CTTCTG	GAACA	TTAATCAATATGAT	FTCC	CAGAAA	AGAA	CTTG				
TAAT	r* <mark>TTTT</mark> T	rccg	CGACCAT <mark>T</mark> G	5 <mark>T</mark> GA	*GGAA	TCGTA	TTTT	T*C <mark>A</mark>	AGATG	CGA	CAGATG	GCGACT	CTGC	TGGGGA <mark>T</mark> ACTTAGC'	fcca <i>i</i>	AGCAAA	AGA	GAAT				
ACA1	r* <mark>TTT</mark> T	rccg	CGACCATCG	GGA	*ggaa	TCGTA	TTTT	T*CG	AGATG	GGA	CAGATG	GCGACT	CTGC	TG <mark>A</mark> GGAC * * TA * GC	rcca;	AGCAA	AAGA	GAGTGA	AG			
ATT.	r* <mark>TTT</mark> T	rcc <mark>a</mark>	CGACCATCG	GGA	*GGAA	TCATA	TTTT	T*CG	AGATG	GGA	CAGATG	GTGACT	ст <mark>а</mark> с	TGGGGAC * * TA * GC	rcc <mark>c</mark> /	AGCAA	AAGA	GAGTGA	AG			
ACA'	*TTTT	rcc <mark>c</mark>	CGACCATCG	GGA	*GGAA	TCGTA	TTTT	T*CG	AGATG	TGA	CAGATG	GCGACT	CTGT	TGGGGAC * * TA * GC	rc t a <i>i</i>	AG <mark>A</mark> AAZ	AGA	GAGTGA	AG			
TAAT	* TTTT	rccg	CGACCATCG	CGA	*ggaa	TCGTA	GTTT	T*CG	AGATG	CGA	CATTAG	AGAATT	CACC	acaactatcaataa'								
TAA	_		CGACCATC		-								_				_		·			
T 3 3 2														TGGGGAC * * TA *GC								
TAAP	A TATT																			_		
TAA	ATA TTTT	r CG	CGACCITCG	GCGA	*GGAA	TCGTA	TTTT	T*CG	AGATG	CGA	CAGATG	GCGACI	CGTC	TGGGGAC * * TA * GC	rccai	AGCAÀA	AAGA	GAGTGA	AGCO			


Comparative analysis - principle

Comparative analysis

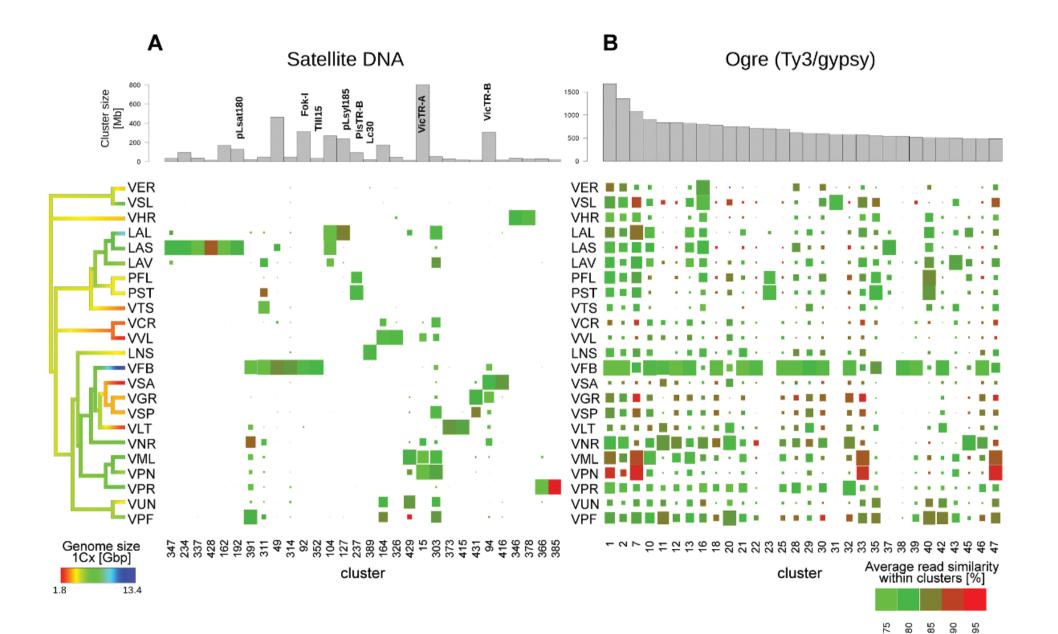
Two samples only (e.g. genotypes of the same species +/- B chromosomes)

- simultaneous clustering of +B and 0B reads, same genome coverage
- evaluate ratios of +B/0B reads in each cluster



Multiple samples (e.g. a set of species differing in genome size)

- comparative clustering
- equal read numbers of genome coverages ?
- problems with species with big variations in genome sizes
- problems when analyzing large numbers of samples


- two-step approach
 - 1./ perform repeat analysis in each species separately
 - 2./ comparative clustering with reads sampled from (1) finding "orthologous" repeats

Comparative study of repeats in 23 species of *Fabeae*

Macas et al. (2015) PLoS ONE 10(11): e0143424

Comparative study of repeats in 23 species of *Fabeae*

