6th Workshop on the Application of Next Generation Sequencing to Repetitive DNA Analysis in Plants

Welcome !

Institute of Plant Molecular Biology, Biology Centre ASCR České Budějovice, Czech Rep.

Programme

Tuesday (May 23)

9:30 - Principles and applications of graphbased repeat clustering (J. Macas)

10 :10 - **RepeatExplorer pipeline version 2.0** (P. Novák)

10:30 - 11:00 *Coffee break*

11:00 - Using RepeatExplorer output for repeat annotation and quantification (J. Macas)

11:20 - Transposon protein databases
(P. Neumann)
11:40 - New tool: Detection and annotation of transposon protein domains (N. Hoštáková)

12:00 - 13:30 Lunch

13:30 – 14:00 - Steven Dodsworth (Kew, UK)
Phylogenetic signal in repeat abundances: Angiosperm examples from tomatoes to orchids

14:00 - (18:00) Practical training I

- design of sequencing and repeat analysis experiments
- introduction to Galaxy environment
- quality control and pre-processing of NGS reads, dealing with various read formats
- setting up clustering analysis
- comparative clustering of multiple samples

19:00 → : **Dinner at "CITYgastro"**

Wednesday (May 24)

9:00 -12:30

• Gustavo Souza – Using genomic repeat

abundance and cytogenomic approaches to infer phylogenetic relationships in *Caesalpinia* sensu lato (Fabaceae)

- Maria Gonzalez Chromosome evolution of South American and Antarctic species of Deschampsia (Poaceae)
- Beatrice Weber Chromoviruses in the genome of sugar beet *Beta vulgaris*
- Danijela Greguraš Repeatome dynamics in the earliest evolutionary stages of apomictic plants
- Alevtina Ruban Why does the genome size differ between roots and shoots in some *Aegilops speltoides* plants?
- Nusrat Sultana **Bioinformatics and molecular** characterization of *Vaccinium corymbosum* genome
- Christiaan Henkel Can we sequence a repeatrich, 35 Gbp tulip genome?

12:30 - 13:30 Lunch

13:30 - (18:00) Practical training II

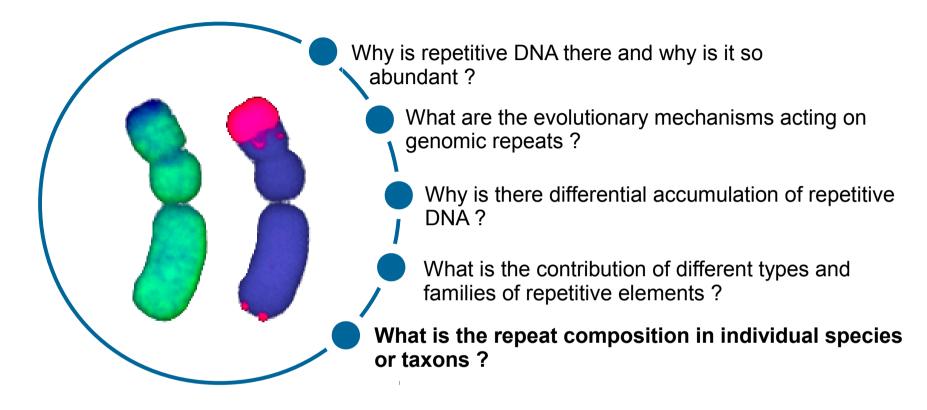
- identification of satellite DNA using TAREAN
- understanding RepeatExplorer output
- cluster annotation and repeat composition of the genome
- comparative clustering of multiple species data interpretation
- repeat quantification (principles, sensitivity and reproducibility)
- design of hybridization probes based on RE

Thursday (May 25)

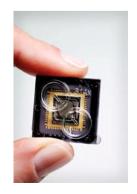
9:00 - 12:30

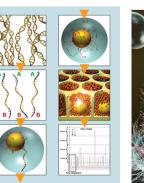
• Amanda Grusz – **Genome evolution in the fern family** *Pteridaceae*

• Andrew Leitch – The placement of Gnetales amongst seed plants

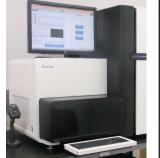

- Sonia Garcia, Daniel Vitales **Concerted** evolution under the microscope: rDNA arrangements in three Asteraceae genera
- Ales Kovarik **Higher-order repeat** structure of 5S rRNA genes of *Esox lucius* (fish) determined from long PacBio reads
- Tanja Vojvoda Zeljko Characterization of transposable elements containing internal tandem repeats in the genome of the Pacific oyster Crassostrea gigas
- Rodolpho Menezes Cytogenetics meets phylogeography and phylogenomics: exploring the evolutionary history of Neotropical swarmfounding social wasps
- Abhijeet Shah Mobile DNA in Acrididae grasshoppers

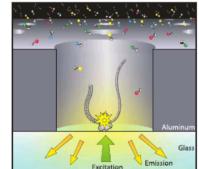
12:30 - 13:30 Lunch


13:30 – (18:00) - Practical training III

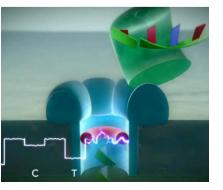

- combining repeat clustering with ChIP-seq data
- identification and phylogenetic analysis of retrotransposon protein domains
- SeqGrapheR visualization and annotation of the cluster graphs
- advanced topics, troubleshooting

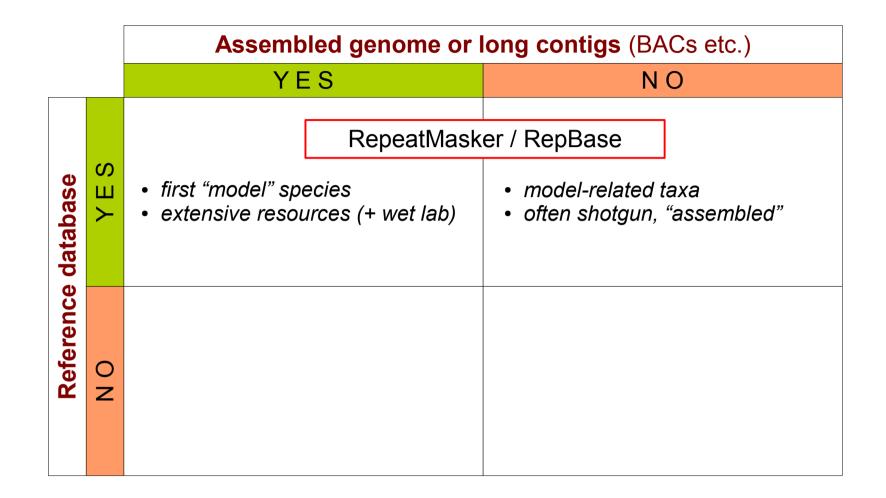
The challenge of repeat identification in complex genomes


Next generation sequencing: getting sequence data is no longer a limiting factor



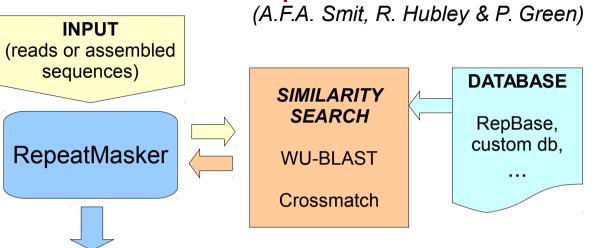
454/Roche




Illumina

Pacific Biosciences

Oxford Nanopore

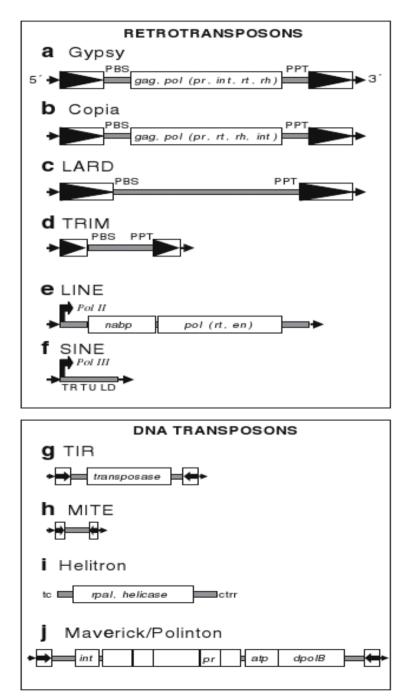


Repeat identification in sequence data

- Pure algorithmic (evaluates "repetitiveness" of substrings in DNA sequence)
- Signature or feature-based (searches for specific structures of biological importance)
- Similarity to known repeats (uses curated databases of known repeats)

Principles and tools for global repeat identification

OUTPUT


table of hits					number of		centage
SW	perc perc perc query	position in query matching	repeat		elements*	occupied of s	equence
score	div. del. ins. sequence	begin end (left) repeat	class/family	Retroelements SINEs:	1 0	12014 bp 0 bp	96.40 % 0.00 %
459	20.0 1.1 0.0 LAL_1000603f	2 96 (4) + Ogre_PS1_from	_AY299398 LTR/Gypsy/Ogre	Penelope	õ	0 bp	
361	27.8 0.0 0.0 LAL_1000670r	1 90 (10) C Ogre_PA_z_c70	00 LTR/Gypsy/Ogre_PA		0	Obp	
449	23.5 0.0 0.0 LAL 1001438f	1 98 (2) + PSC454_CL1Cor		CRE/SLACS	0	0 bp	0.00 %
491	23.5 0.0 0.0 LAL 1001438r	3 100 (0) C PSC454_CL1Cor		L2/CR1/R		0 bp	
487	24.0 0.0 0.0 LAL 1001478f	1 100 (0) C PSC454 CL1Cor		R1/LOA/J		0 bp	
398	28.0 0.0 0.0 LAL_1001478r	1 100 (0) C PSC454_CL1Cor		R2/R4/Ne		0 bp	
417	20.6 2.0 2.0 LAL 1002130r	2 100 (0) C PSC454_CL1Cor		RTE/Bov-I		0 bp	
373	29.0 0.0 0.0 LAL 1002357f	1 100 (0) + Ogre_PS1_from		L1/CIN4 LTR element	0 te. 1	0 bp 12014 bp	96.40 %
	-	;;		BEL/Pao	0	0 bp	0.00 %
				Tyl/Copis		0 bp	0.00 %
>se	a 1		< maske			12014 bp	
		CCGTCAGGGTTGTTGAGTTT	PTCCCTACC	Retrov:		0 bp	
		GTGTGGATGGTTTTCCCCAG	sequenc	e e			
				DNA transposo		0 bp	
		INNNNNNNNNNNNNNNNNNNNNNN		hobo-Activ		0 bp	
		INNNNNNNNNNNNNNNNNNNNNN		Tc1-IS630-I	Pogo O	0 bp	
NNN	NNNNNNNNNNNNNNNNNNN	INNNNNNNNNNNNNNNNNNNNN	NNNNNNN summar	Y > En-Spm	0 0	0 bp	
NNN	NNNNNNNNNNNNNNNNNNN	INNNNNNCCGATCGTCCGTTGA		MuDR-IS905 PiggyBac	0	O bp O bp	
TGA	TCAGATTTTCCCCCAGAG	TCACCTCTCCGTTGGTGTCGA	ATAAACGAT	Tourist/Ha		0 bp	
GAG	TTTTTCCTATGCGTCCGT	TGACGTATAGCTGCATGTTC	CCCAAAGAT	Other (Mir		0 bp	
	TTGTTAATGC				, Transib)	5 55	0.00 0

		Assembled genome or long contigs (BACs etc.)						
		Y E	ES	NO				
			RepeatMask	er / RepBase				
database	ΥES	 first "model" species extensive resources (+ wet lab) 		 model-related taxa often shotgun, "assembled" 				
Reference	0 N	• LTR_STRUC, N	MITE-Hunter , etc.					

Repeat identification in sequence data

- Pure algorithmic (evaluates "repetitiveness" of substrings in DNA sequence)
- Signature or feature-based (searches for specific structures of biological importance)
- Similarity to known repeats (uses curated databases of known repeats)

Principles and tools for global repeat identification

Signature / structure-based approaches

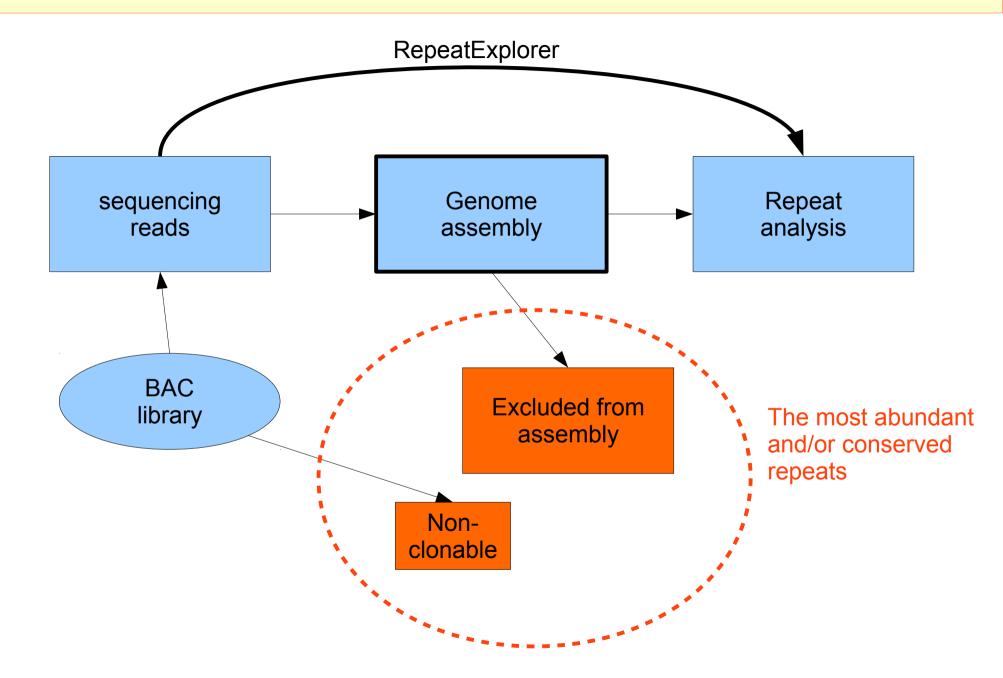
LTR_STRUC (McCarthy and McDonald, 2003)

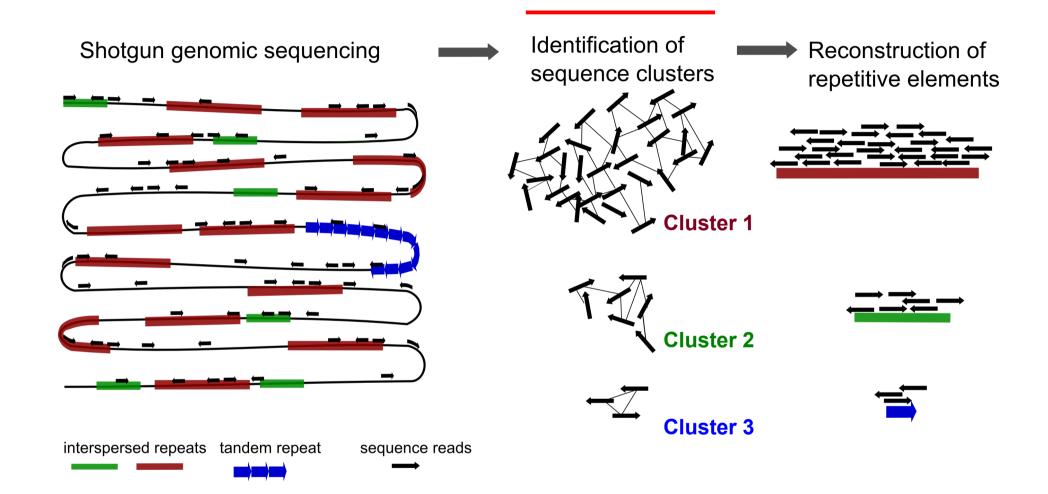
LTR_FINDER (Xu and Wang, 2007)

SINE-Finder (Wenke et al. 2011)

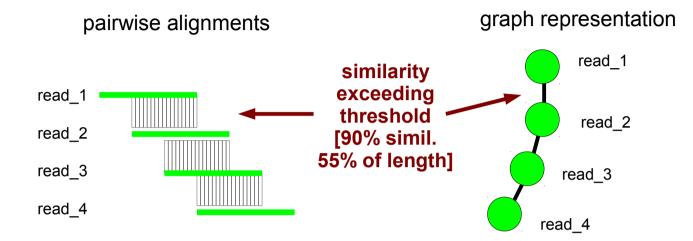
MITE-Hunter (Han and Wessler, 2010) MITE Analysis Toolkit (Yang and Hall, 2003)

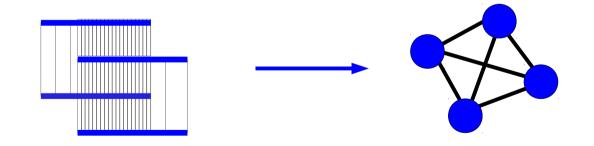
HelitronFinder (Du et al. 2008) [HelA helitrons in maize]

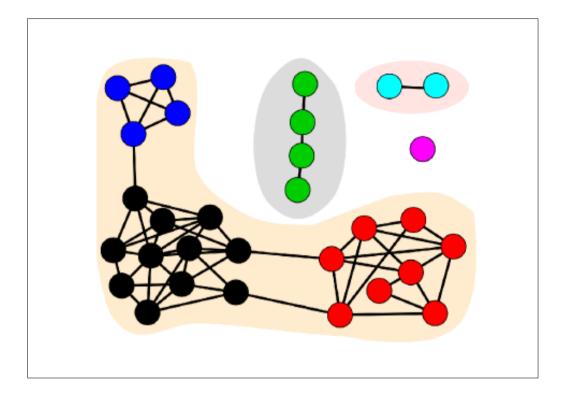

Saha et al. (20008)


		Assemb	sembled genome or long contigs (BACs etc.)				
		ΥE	S	NO			
			RepeatMask	er / RepBase			
database	ΥES	 first "model" species extensive resources (+ wet lab) 		 model-related taxa often shotgun, "assembled" 			
Reference	ON	 LTR_STRUC, N REPET 	/IITE-Hunter , etc.	 (using NGS real direct assemb clustering-bas 	oly (phrap,)		

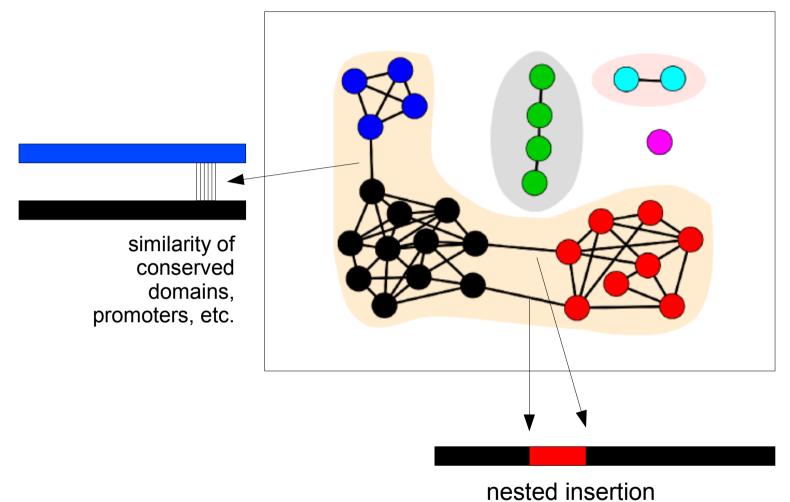
Repeat identification in sequence data


- Pure algorithmic (evaluates "repetitiveness" of substrings in DNA sequence)
- Signature or feature-based (searches for specific structures of biological importance)
- Similarity to known repeats (uses curated databases of known repeats)


Principles and tools for global repeat identification

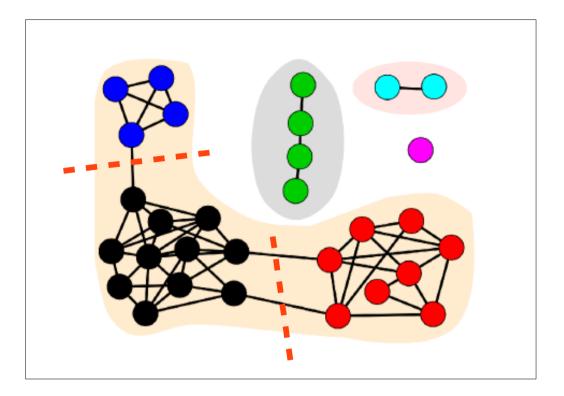


CLUSTER = a set of frequently overlapping reads = REPEAT FAMILY



Single linkage clustering => <u>connected components</u>

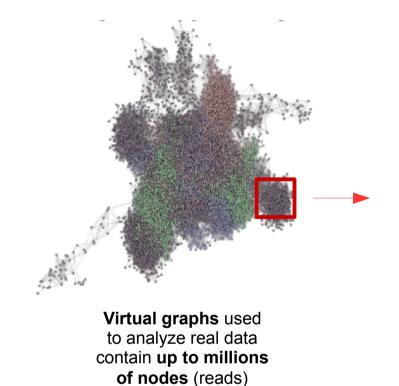
TGICL (TIGR Gene Indices clustering tool) Pertea et al., 2003

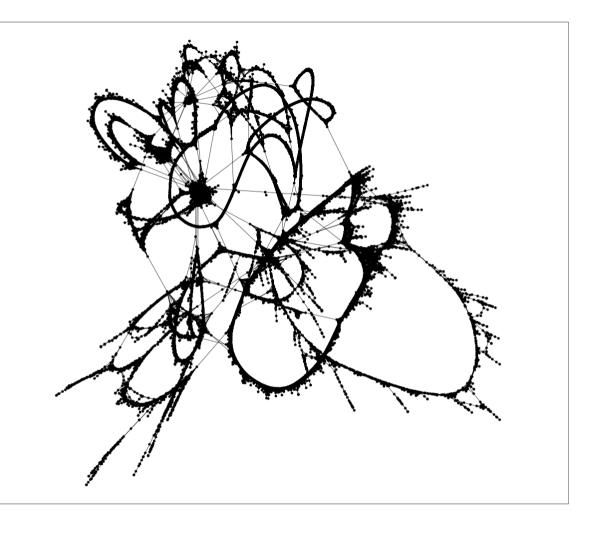

Macas et al. (2007) - Repetitive DNA in the pea (*Pisum sativum* L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and *Medicago truncatula*.

Single linkage clustering => <u>connected components</u>

TGICL (TIGR Gene Indices clustering tool) Pertea et al., 2003

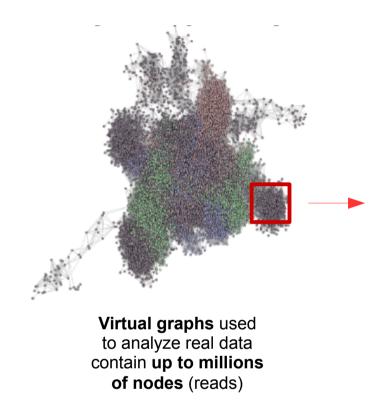
Graph-based clustering

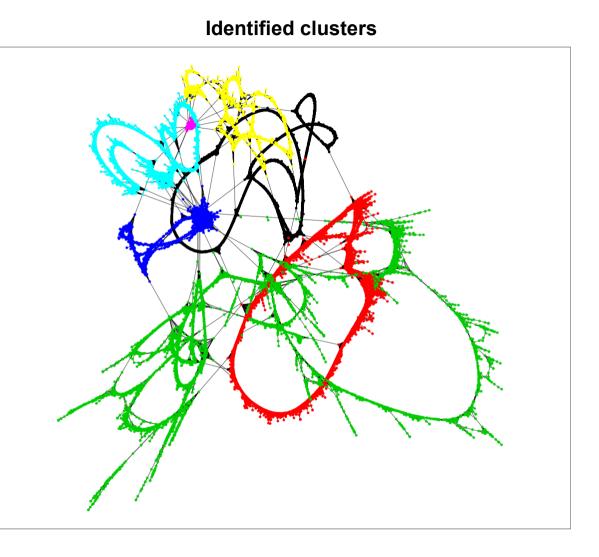



Graph-based clustering

- Sequence overlaps between the reads are transformed to a graph where the reads are represented as nodes and their similarities as edges connecting the nodes
- Graph structure is examined to detect communities of frequently connected nodes which are split to separate clusters

Graph-based characterization of repeat clusters

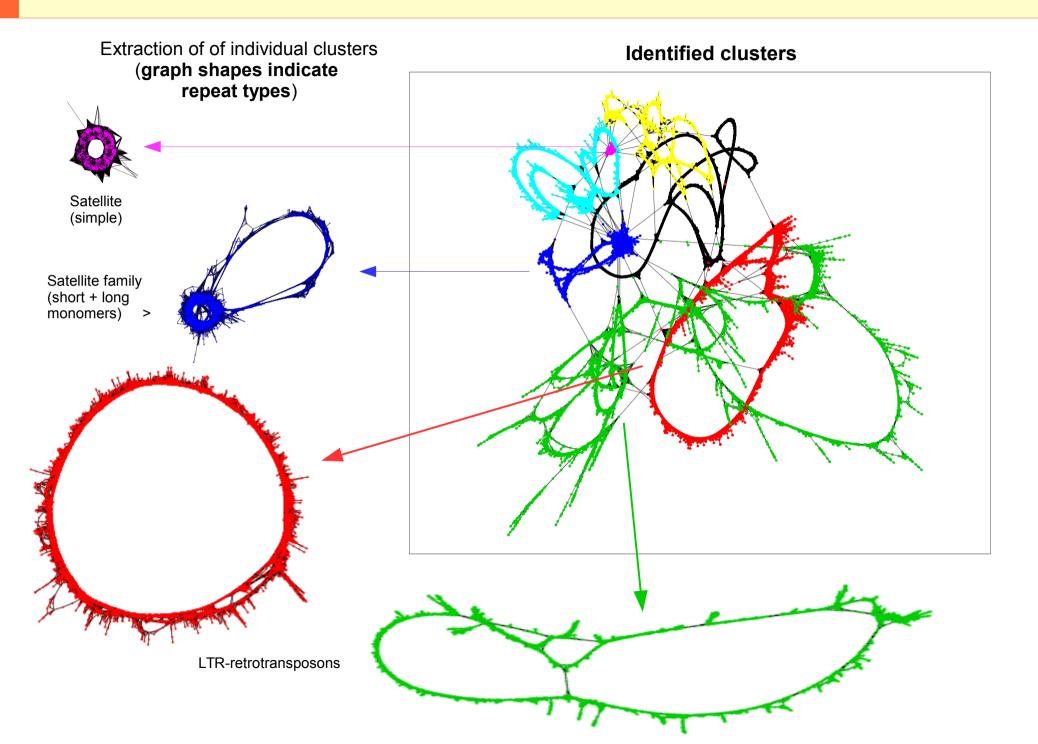


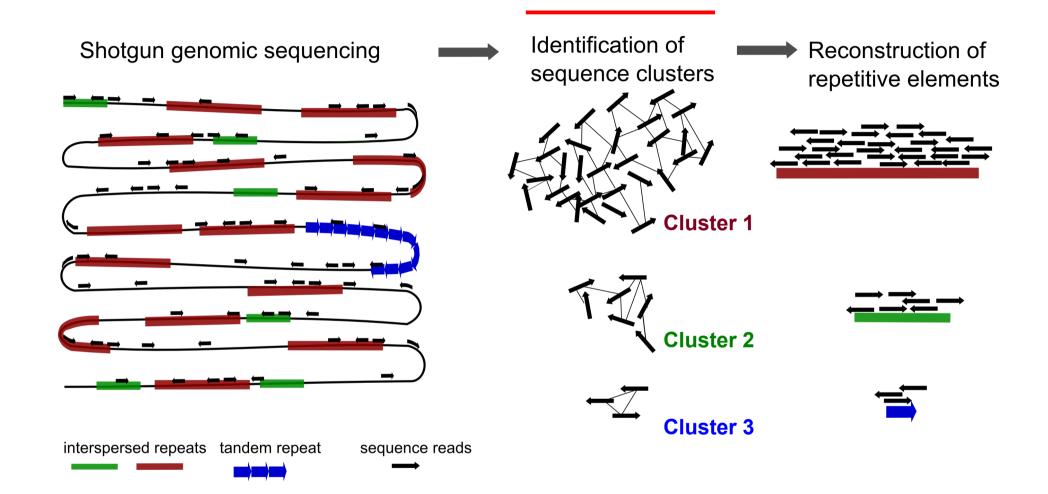


Graph-based clustering

- Sequence overlaps between the reads are transformed to a graph where the reads are represented as nodes and their similarities as edges connecting the nodes
- Graph structure is examined to detect communities of frequently connected nodes which are split to separate clusters

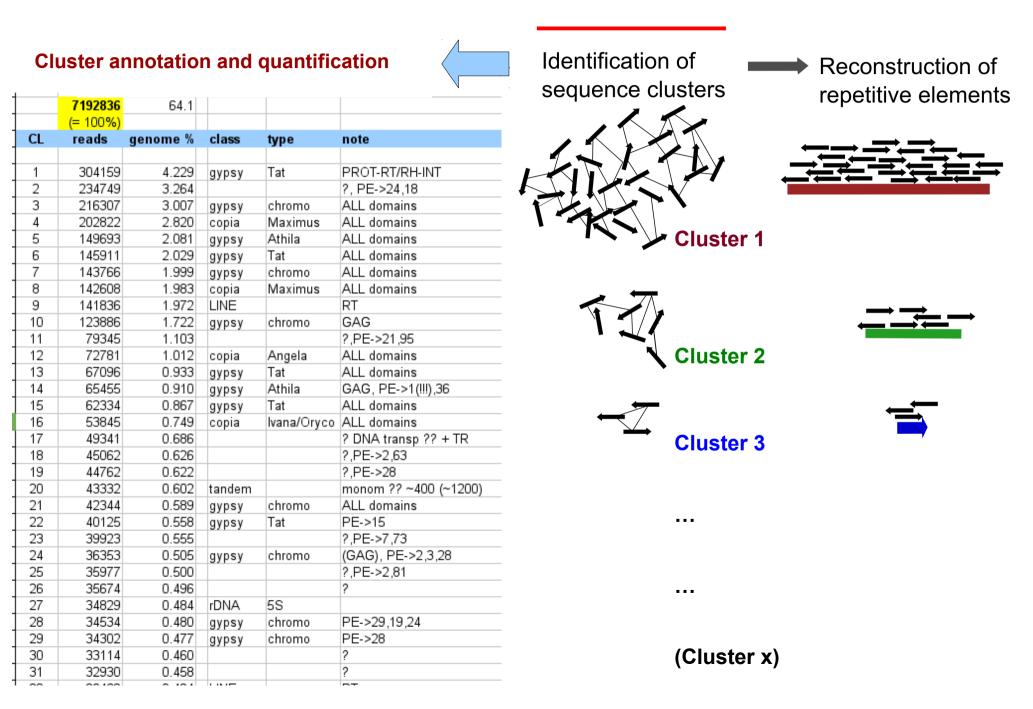
Graph-based characterization of repeat clusters





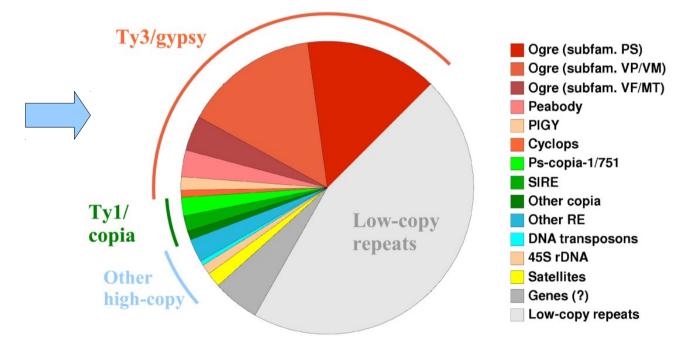
Graph-based clustering

- Sequence overlaps between the reads are transformed to a graph where the reads are represented as nodes and their similarities as edges connecting the nodes
- Graph structure is examined to detect communities of frequently connected nodes which are split to separate clusters


Graph-based characterization of repeat clusters

CLUSTER = a set of frequently overlapping reads = REPEAT FAMILY

Repeat characterization

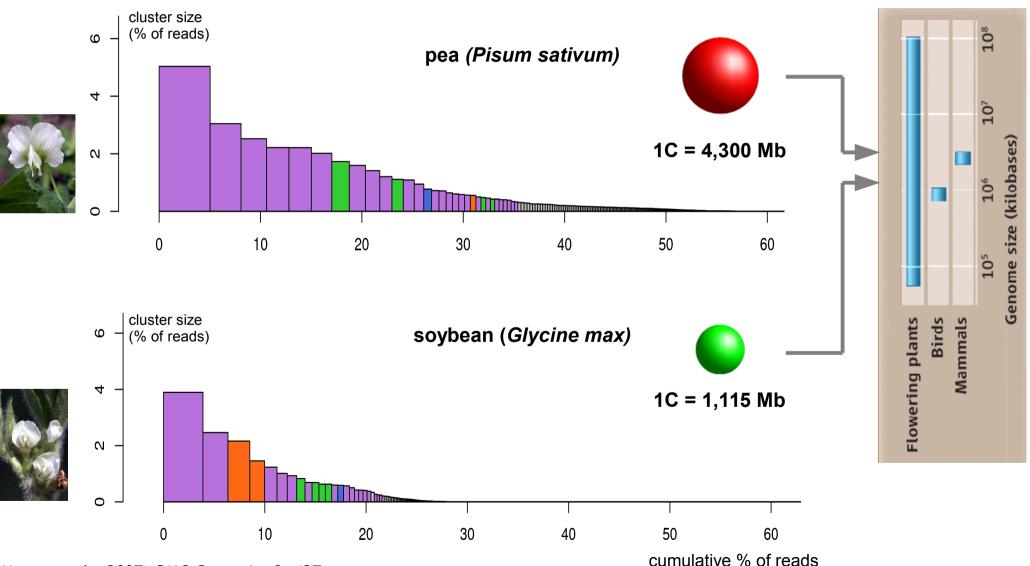


Repeat characterization

Cluster annotation and quantification

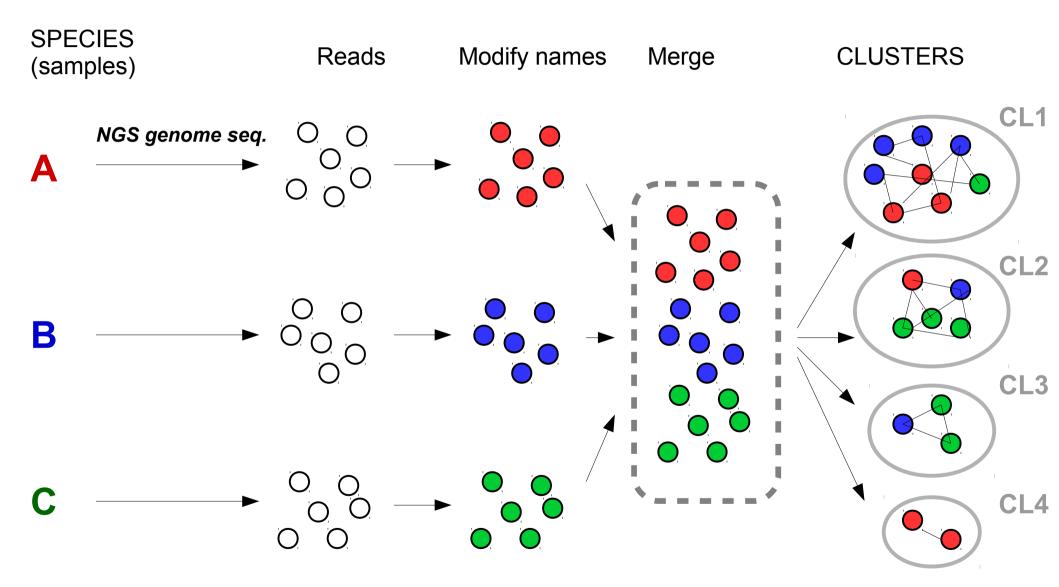
	7192836	64.1		
	(= 100%)			
CL	reads	genome %	class	type
1	304159	4.229	gypsy	Tat
2	234749	3.264		
3	216307	3.007	gypsy	chromo
4	202822	2.820	copia	Maximus
5	149693	2.081	gypsy	Athila
6	145911	2.029	gypsy	Tat
7	143766	1.999	gypsy	chromo
8	142608	1.983	copia	Maximus
9	141836	1.972	LINE	
10	123886	1.722	gypsy	chromo
11	79345	1.103		
12	72781	1.012	copia	Angela
13	67096	0.933	gypsy	Tat
14	65455	0.910	gypsy	Athila
15	62334	0.867	gypsy	Tat
16	53845	0.749	copia	lvana/Oryco
17	49341	0.686		
18	45062	0.626		
19	44762	0.622		
20	43332	0.602	tandem	
21	42344	0.589	gypsy	chromo
22	40125	0.558	gypsy	Tat
23	39923	0.555		
24	36353	0.505	gypsy	chromo
25	35977	0.500		
26	35674	0.496		
27	34829	0.484	rDNA	5S
28	34534	0.480	gypsy	chromo
29	34302	0.477	gypsy	chromo
30	33114	0.460		
31	32930	0.458		
~~	00,400	A 10.1		

Proportions of various repeat types in a genome


RepeatExplorer

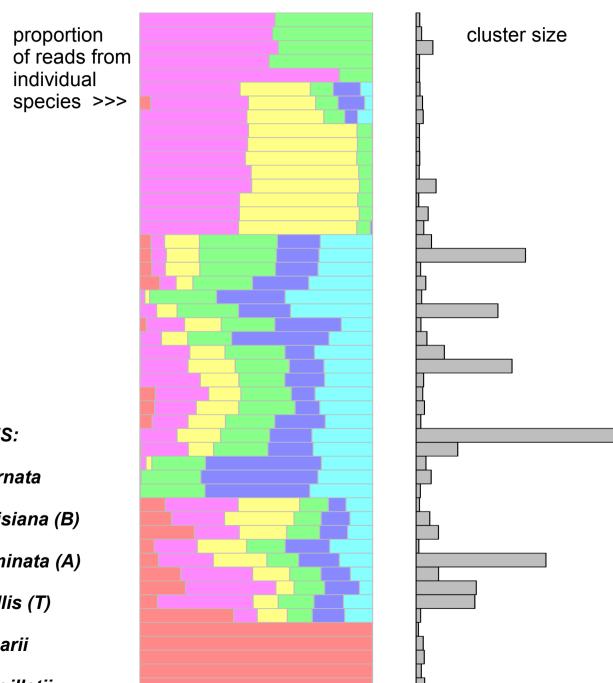
- What RepeatExplorer can do for you:
 - Identify all sequences with certain number of repetitions
 - Repeat quantification
 - Provide models of repeat popoulations (sequence variability)
 - Help in repeat classification/annotation (in plant genomes)
- What it cannot do:
 - Genome assembly or reconstruction of individual repeat copies
 - Analyze repeats using assembled genomes as input
 - Use long NGS reads (PacBio, Oxford Nanopore) as input (work in progress)
 - Identify some tandem repeats with very short monomers or other low-complexity repeats

Think about proper design of your analysis - RE is just a program designed for a specific type of input (e.g. it needs WGS data as input and it will not work with BAC clones)


Repeat composition of individual species

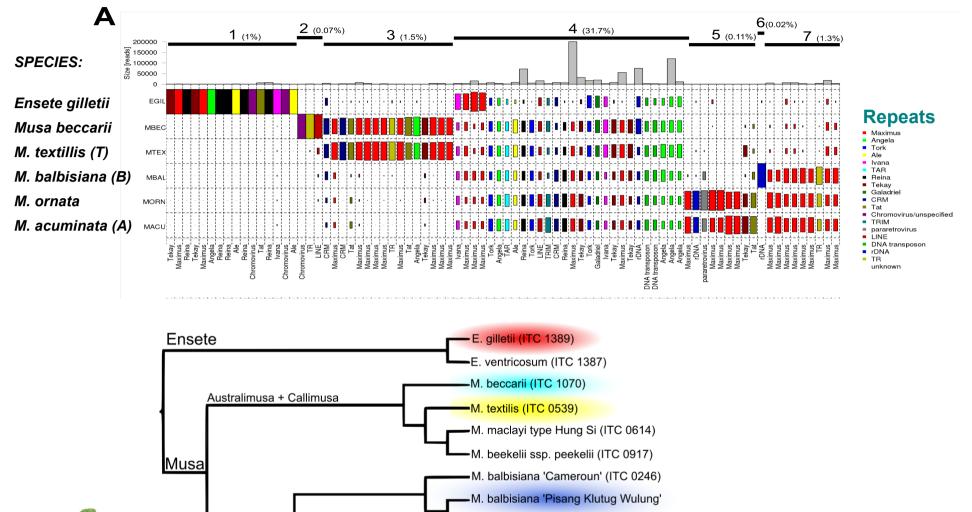
Repeat type: Ty3/gypsy Ty1/copia Satellite DNA rDNA other/unknown

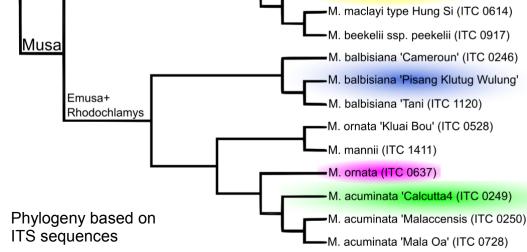
Macas et al. (2007) BMC Genomics 8: 427.


Comparative analysis

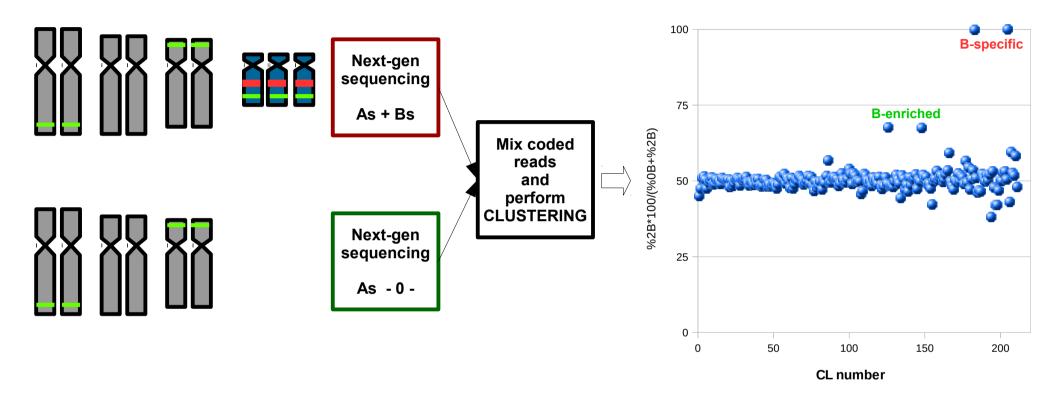
Comparative analysis

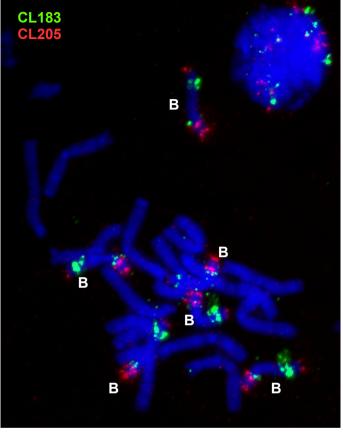
Sequence **reads from multiple species are mixed** and subjected to clustering analysis


- Efficient identification of homologous repeats from different species
- Easy quantification

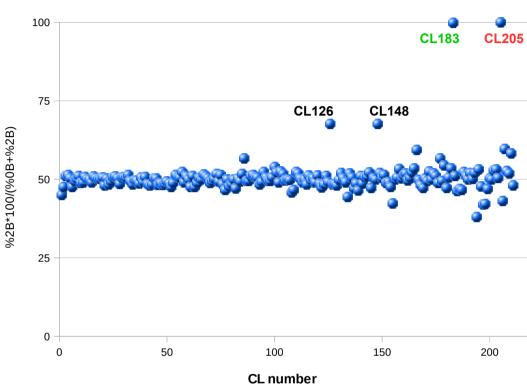


Comparative analysis




Novak et al. 2014

Comparative analysis (searching for B-specific repeats)


Detection of clusters enriched on Bs

Aegilops speltoides, comparative analysis of 0B / 2B plants

FISH by Alevtina Ruban

Detection of clusters enriched on Bs

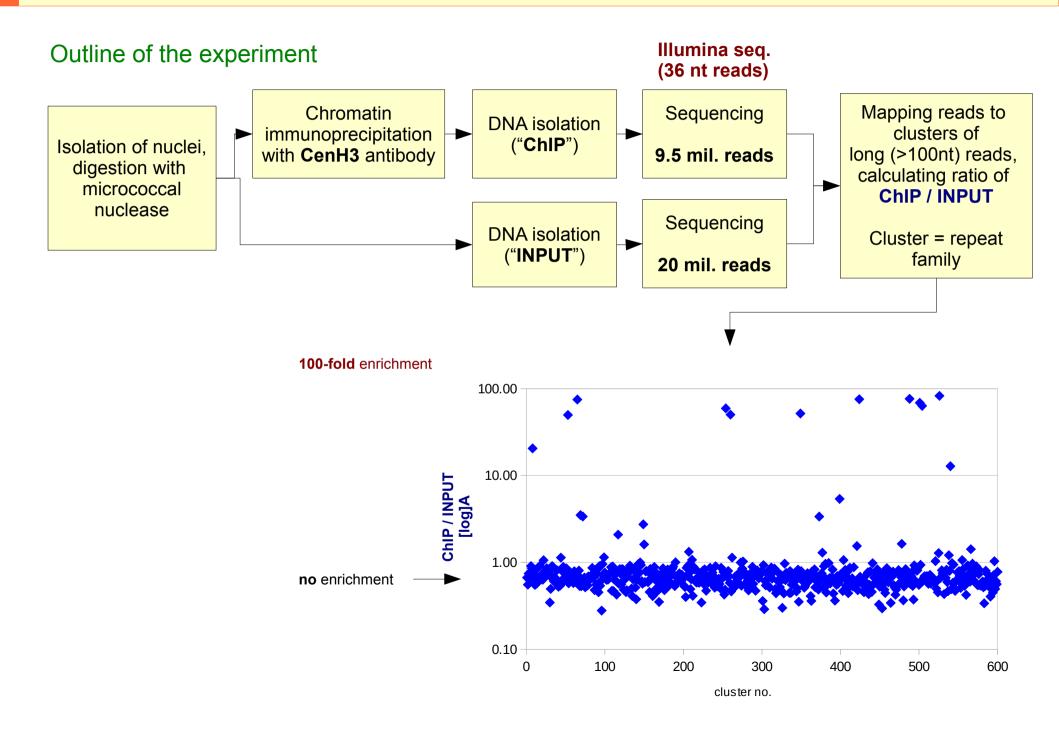
Sequencing by Houben lab

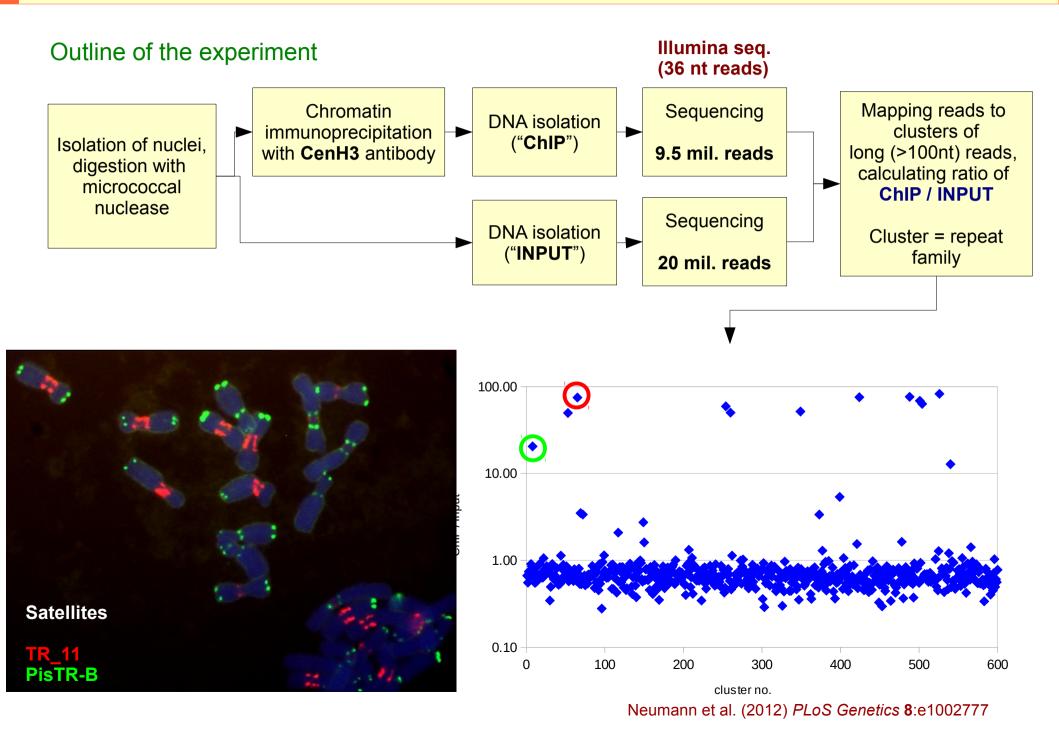
Repeats significantly enriched on Bs

							%2B*100/	Repeat
CL	reads	[%]	0B	%	2B	%	/(%2B+%0B)	type
126	5216	0.191	1688	0.120	3528	0.252	68	satellite (86 bp)
148	2877	0.105	934	0.067	1943	0.139	68	tandem (?)
183	731	0.027	1	0.000	730	0.052	100	satellite (~1.1 kb)
205	358	0.013	0	0.000	358	0.026	100	satellite (185 bp)

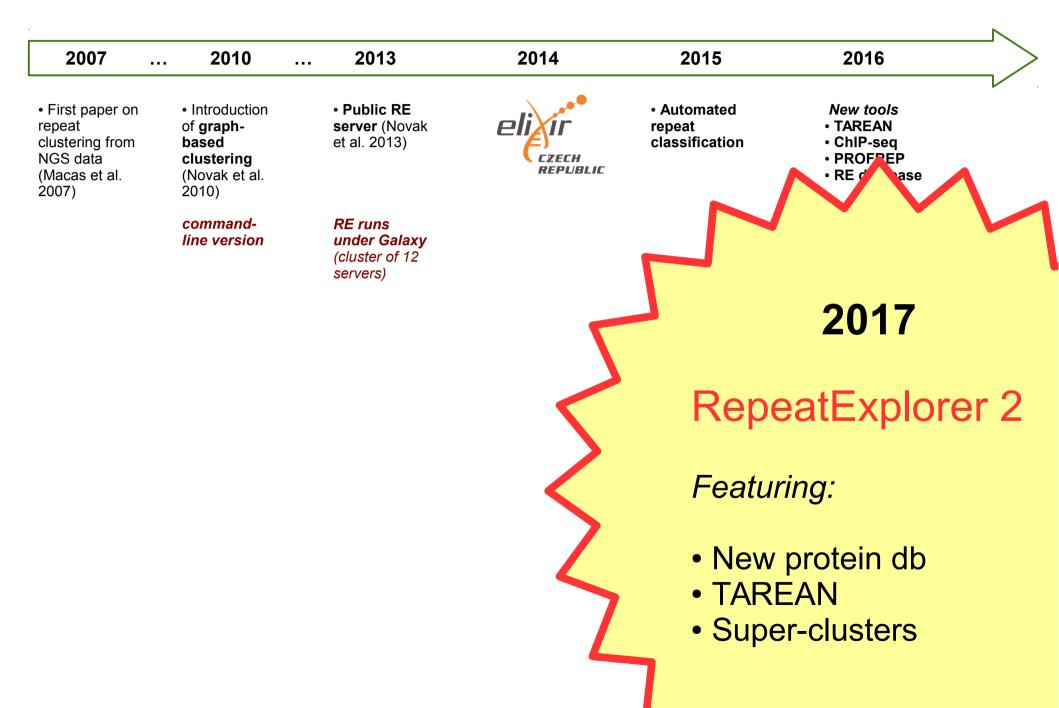
Cluster annotation and quantification

CL	_ reads genon		class	type	
		J			
1	304159	4.229	gypsy	Tat	
2	234749	3.264			
3	216307	3.007	gypsy	chromo	
4	202822	2.820	copia	Maximus	
5	149693	2.081	gypsy	Athila	
6	145911	2.029	gypsy	Tat	
7	143766	1.999	gypsy	chromo	
8	142608	1.983	copia	Maximus	
9	141836	1.972	LINE		
10	123886	1.722	gypsy	chromo	
11	79345	1.103			
12	72781	1.012	copia	Angela	
13	67096	0.933	gypsy	Tat	
14	65455	0.910	gypsy	Athila	
15	62334	0.867	gypsy	Tat	
16	53845	0.749	copia	lvana/Oryco	
17	49341	0.686		-	
18	45062	0.626			
19	44762	0.622			
20	43332	0.602	tandem		
21	42344	0.589	gypsy	chromo	
22	40125	0.558	gypsy	Tat	
23	39923	0.555			
24	36353	0.505	gypsy	chromo	
25	35977	0.500			
26	35674	0.496			
27	34829	0.484	rDNA	5S	
28	34534	0.480	gypsy	chromo	
29	34302	0.477	gypsy	chromo	
30	33114	0.460			
31	32930	0.458			
	00.400				

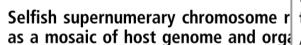

CLUSTERS


- Represent specific repeat families/variants or their parts
- They are collections of sequence reads capturing full sequence variability of repeat populations

Using clusters as reference for similaritybased classification of:


- RNA-seq reads (mRNA, smRNAs,...)
 - Detection of transcribed repeats
 - Comparative analysis (tissues,...)
- ChIP-seq reads
 - Association of repeats with specific types of chromatin

Identification of centromeric repeats by ChIP-seq


History

Repetitive DNA characterization using RepeatExplorer

Plants

- Over 100 species characterized so far
- Comparative studies
- Whole genome assembly projects

Mihaela Maria Martis^a, Sonja Klemme^b, Ali Mohammad Banaei-Moghaddam^b, Fra Thomas Schmutzer^b, Uwe Scholz^b, Heidrun Gundlach^{*}, Thomas Wicker^d, Hana Šimk Marie Kubaláková^e, Eva Bauer¹, Grit Haseneyer⁴, Jörg Fuchs^b, Jaroslav Doležel^e, Ni and Andreas Houben^{b,1}

Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helm Environmental Health, 85764 Neuherberg, Germany, "Leibniz Institute of Plant Genetics and Crop Plant R Centre, Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, Cseké Budéjovice University of Zurich, Switzerland; "Center of the Region Hanà for Biotechnological and Agricult of Experimental Botany, Olomouc 77200, Czech Republic; and 'Division of Plant Breeding and Applied Ge Freising, Germany

Edited by James A. Birchier, University of Missouri, Columbia, MO, and approved July 6, 2012 (receive	ed to IVI. Eric Schr
	vent; L. Urbanus ⁶ ,
set of A chromosomes, and occur in all eukaryotic groups. They variants within rela differ from the basic complement in morphology, pairing behavior, gle origin.	Julia Weiss ¹
and inheritance and are not required for normal growth and One of the be	st-sti and Cris Kul

Holocentromeres in *Rhynchospora* are associated wigenome-wide centromere-specific repeat arrays interspersed among euchromatin

André Marques^{a,b}, Tiago Ribeiro^{a,b}, Pavel Neumann^c, Jiří Macas^c, Petr Novák^c, Veit Schubert^b, Marco Pellino^b, Jörg Fuchs^b, Wei Ma^{*}, Markus Kuhlmann^b, Ronny Brandt^b, André L. L. Vanzela^d, Tomáš Beseda^a, Hana Šimková^e, Andrea Pedrosa-Harand^{a,1}, and Andreas Houben^{b,1}

³Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, 50670-420 Recife, Pernambuco, Brazil, ¹Le Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Stadt Seeland, Germany, ¹Laboratory of Molecular Cytogenetics, Institute of Plant Molecular Biology, Biology, Centre of the Academy of Sciences of the Czech Republic, 370 05 Cseke Budejovice, Czech Republic, Plant Molecular Otyperation, 2007 Science of the Academy of Sciences of the Czech Republic, 370 05 Cseke Budejovice, Czech Republic, Cytogenetics and Plant Diversity, Department of General Biology, State University of Londrina, 86057970, Londrina, Paraná, Brazil, and ⁴Center of Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-3871 Olomouc, Czech Republic

lited by James A. Birchler, University of Missouri-Columbia, Columbia, MO, and approved September 11, 2015 (received for review June 23, 2015)

Holocentric chromosomes lack a primary constriction, in contrast to monocentrics. They form kinetochores distributed along almost the entire poleward surface of the chromatids, to which spindle fibers attach. No centromere-specific DNA sequence has been found for any holocentric organism studied so far. It was proposed that centromeric repeats, typical for many monocentric species, could not occur in holocentric organism studied because of the holochnetic centromere organization. Here we show that the holokinetic centromeres of the *Coveraceae Rhynchospora publera* are

PNAS

cases, a longitudinal CENH3-positive centromere structure w served during mitosis. In the rush *Lucula* (Juncaceae), the longi centromere forms a groove (here referred as the "cent groove") in each sister chromatid along almost the whole meti chromosome except for the most terminal regions (9–11). Re a similar centromere organization was found in the sedge : *Rhynchospont pubera* (12). The absence of CENH3 and the meric protein C (CENP-C) in some lineages of holocentric (13) challeness the general notion of a conserved molecular c

ARTICLES PUBLISHED: 27 MAY 2016 | ARTICLE NUMBER: 16074 | DOI: 10.1038/NPLANTS.2016.74

OPFN

Insight into the evolution of the Solanaceae from the parental genomes of *Petunia hybrida*

Aureliano Bombarely^{1†}, Michel Moser^{2†}, Avichai Amrad², Manzhu Bao³, Laure Bapaume⁴, Cornelius S. Barry⁵, Mattijs Bliek⁶, Maaike R. Boersma⁷, Lorenzo Borghi⁸, Rémy Bruggmann⁹, Marcel Bucher¹⁰, Nunzio D'Agostino¹¹, Kevin Davies¹², Uwe Druege¹³, Natalia Dudareva¹⁴, Marcos Egea-Cortines¹⁵, Massimo Delledonne¹⁶, Noe Fernandez-Pozo¹⁷, Philipp Franken¹³, Laurie Grandont¹⁸, J. S. Heslop-Harrison¹⁹, J

Diwa Malla² Joëlle Muhle Didier Reinh M. Eric Schr

OPEN

nature

plants

ARTICLES

A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution

Massimo Iorizzo^{1,12}, Shelby Ellison¹, Douglas Senalik^{1,2}, Peng Zeng³, Pimchanok Satapoomin¹, Jiaying Huang³, Megan Bowman⁴, Marina Iovene⁵, Walter Sanseverino⁶, Pablo Cavagnaro^{7,8}, Mehtap Yildiz⁹, Alicja Macko-Podgórni¹⁰, Emilia Moranska¹⁰, Ewa Grzebelus¹⁰, Dariusz Grzebelus¹⁰, Hamid Ashrafi^{11,12}, Zhijun Zheng³, Shifeng Cheng³, David Spooner^{1,2}, Allen Van Deynze¹¹ & Philipp Simon^{1,2}

We report a high-quality chromosome-scale assembly and analysis of the carrot (*Daucus carota*) genome, the first sequenced genome to include a comparative evolutionary analysis among members of the euasterid II clade. We characterized two new polyploidization events, both occurring after the divergence of carrot from members of the Asterales order, clarifying the evolutionary scenario before and after radiation of the two main asterid clades. Large- and small-scale lineage-specific duplications have contributed to the expansion of gene families, including those with roles in flowering time, defense response, flavor, and pigment accumulation. We identified a candidate gene, DCAR_032551, that conditions carotenoid accumulation (Y) in carrot taproot and is coexpressed with several isoprenoid biosynthetic

Repetitive DNA characterization using RepeatExplorer

Plants

- Over 100 species characterized so far
- Comparative studies
- Whole genome assembly projects

Mammals

Bats, deer

Fish

Austrolebias charrua, Cynopoecilus melanotaenia

Insects

Locust, grasshoppers, kissing bugs

Worms

Soil helmints

